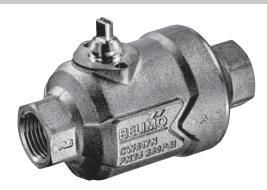


Содержание	
PIQCV Зональный регулирующий шаровой кран с постоянным расходом DN15,20 НОВИНКА!	
Техническое описание. Обзор типов. Технические характеристики	1
Особенности изделия. Аксессуары. Инструкция по установке	2
Размеры	4
Комбинация кран/электропривод	4
CQ24A Поворотный электропривод с установкиой величины kv	5
CQ230A Поворотный электропривод с установкиой величины kv	6
CQ24A- SR Поворотный электропривод плавного регулирования	7
CQK24A- SR Поворотный электропривод плавного регулирования с охранной функцией	8
PICCV Регулирующий клапан с постоянным расходом	
Задача. Решение. Преимущества	9
Принцип действия. Конструкция клапана	10
Комбинация кран / электропривод	11
Технические характеристики. Габаритный размеры	12
EPIV Регулирующий клапан независимый от давления с электронным датчиком расхода	
Принцип действия	13
Обзор типов	13
Технические характеристики	14
Описание устройства	15
Электрическое подключение	16
Функционирование при работе в сети MP-Bus	16
Требования по безопасности	16
Особенности установки	17
Подбор клапана и определение перепада давления	18
Размеры / вес	18
Комбинация кран / электропривод	19
Energy Valve Регулирующий клапан независимый от давления с электронным датчиком расхода и мониторингом энергии системы	
Принцип действия	20
Обзор типов	20
Технические характеристики	21
Описание устройства	22
Требования по безопасности	23
Элетромонтаж	24
Функционирование	24
Управление и индикация	25
Особенности установки	25
Подбор клапана и определение перепада давления	27
Размеры / вес	27
Комбинация кран / электропривод	28
положина при	



PIQCV Зональный регулирующий шаровой кран с постоянным расходом DN15,20

Техническое описание С2..QP-..

Независимый от давления 2-ходовый зональный шаровой кран, внутренняя резьба

- открытые и закрытые системы горячей и холодной воды
- для плавного регулирования воды в системах подготовки воздуха и отопления
- Простой монтаж привода

Обзор типов					
	Тип	Vnom [л/час]	DN [мм]	Rp [дюймы]	PN
	C215QP-B	210	15	1/2	25
	C220QP-D	420	15	1/2	25
	C220QP-F	980	20	3/4	25

Технические характеристики

Функциональные данные

Среда	Холодная и горячая вода (содержание гликоля макс 50%)
Температура среды	590° C
Диапазон давления	16350 кПа
Номинальное давление Ps	1600 кПа
Запирающее давление ΔPs	700 кПа
Характеристика потока	Равнопроцентная, оптимизирована в диапазоне открытия
Стабильность давления	В диапазоне 16350 кПа: ±10%
Уровень утечки	Класс А, герметичен
Установка расхода	См. инструкцию по установке
Трубное присоединение	Внутренняя резьба
Угол поворота	90° (рабочий диапазон 1590°)
Положение установки	От вертикального до горизонтального (относительно штока)
Тех. обслуживание	Не требуется
Тело клапана	Латунь
Запирающий элемент	Нержавеющая сталь
Шток	Нержавеющая сталь
Уплотнение штока	Кольцо EPDM
Уплотнение шара	PTFE / Кольцо EPDM
Диафрагма	EPDM
Обозначения:	Vnom = номинальный поток при полностью открытом клапане Vmax = максимальный расход установленный путем огрничения угла поворота привода

Требования по безопасности

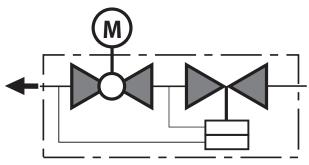
Материалы

- Клапан разработан для использования в системах отопления, вентиляции и кондиционирования и не применяется в областях, выходящие за рамки, указанные в спецификации, особенно для применения на воздушных суднах.
- Устройство может устанавливаться только обученным персоналом. В процессе установки должны быть учтены все рекомендации завода-изготовителя.
- Клапан не содержит частей, которые могут быть переустановлены или отремонтированы потребителем.
- Недопустима утилизация вместе с бытовыми отходами. Необходимо соблюдать все действующие правила и инструкции, относящиеся к данной конкретной местности.
- При расчете потока в регулирующем или конечном управляющем элементе должны учитываться принятые правила и нормы.

Зональный регулирующий шаровой кран **PIQCV** с постоянным расходом DN15,20

Особенности изделия

Управление


Кран управляется при помощи поворотного электропривода. Поворотные электроприводы управляются стандартным сигналом 0...10 В= или по 3-позиционной схеме и поворачивают шар внутри крана регулирующее устройство — в открытое положение согласно управляющему сигналу. Кран открывается в направлении против часовой стрелки и закрывается по часовой стрелке.

Характеристика потока

Равнопроцентная характеристика потока обеспечивается специфической конструкцией шара.

Постоянный расход

Благодаря встроенному регулятору давления в диапазоне перепада давления 16...350 кПа обеспечивается постоянный расход теплоносителя. Независимо от перепада давления через клапан, авторитет клапана равен 1. Даже при изменении давлении или в случае частичной нагрузки, уровень расхода остается неизменным для каждого соответствующего положения открытия клапана (угла поворота), что обеспечивает устойчивое регулирование.

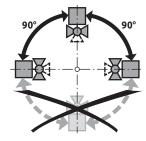
Ограничение расхода

Несмотря на применение электропривода, кран может быть настроен с помошью ограничителя расхода таким образом, чтобы через теплообменник в любом случае проходило некоторое количество теплоносителя.

Простая прямая установка

Привод монтируется на кран без применения каких-либо инструментов. Штифты на приводе должны точно совпадать с отверстиями на установочном фланце крана . Привод может устанавливаться в двух направлениях (с шагом 180°).

Аксессуары


Механические аксессуары

Удлинитель штока ZCQ-E Удлинитель штока ZCQ-FL

Инструкция по установке

Рекомендуемое положение **установки**

Кран может быть установлен вертикально или горизонтально. Кран не может быть **установлен штоком вниз.**

Установка на обратную воду

Рекомендуется установка на обратную воду.

Требования к качеству воды

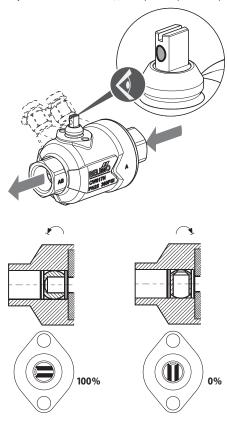
Шаровой кран является относительно чувствительным устройством. Для продолжительной работы недопустимо попадание в кран твердых частиц. С целью обеспечения его продолжительной работы

рекомендуется использовать фильтры.

Техническое обслуживание

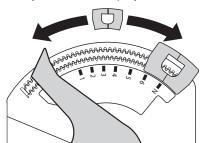
Регулирующие краны и поворотные электроприводы не требуют технического обслуживания Перед началом проведения любых сервисных работ, убедитесь, что электропривод, установленный на шаровом кране, отключен от электропитания (путем отсоединения питающего кабеля). Все насосы в прилегающих участках должны быть также отключены и соответствующие участки трубопровода заглушены. При необходимости перед проведением работ систему нужно охладить, а давление внутри системы снизить до атмосфер ного.

Система не может быть включена обратно до тех пор, пока кран не будет установлен на место согласно инструкции и соединения не изолированы должным образом.



PIQCV Зональный регулирующий шаровой кран с постоянным расходом DN15,20

Инструкция по установке

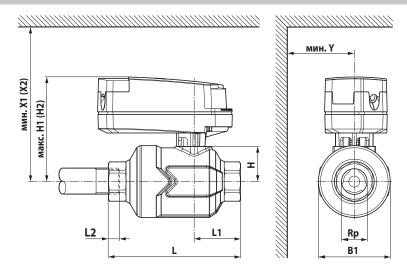

Направление потока

Направление потока указано стрелкой на корпусе крана и должно обязательно соблюдаться. В противном случае возможен выход из строя шарового крана.

Установка Кv

Угол поворота привода может быть настроен с шагом 2.5°. Это используется для установки величины Vmax (максимальный расход на клапане). Отделить ограничитель и установить его в требуемое положение.

		Поз	1	2	3	3+	4–	4	4+	5-	5	5+	6-	6	6+	N-	N
C215QP(T)-B	макс	(л/ч)	20	25	35	40	45	50	60	70	85	95	110	125	140	160	170
C215QP(1)-B	макс	(л/с)	0,005	0,007	0,009	0,011	0,012	0,014	0,017	0,020	0,023	0,027	0,031	0,035	0,039	0,044	0,048
C215QP(T)-D	макс	(л/ч)	45	60	80	90	100	115	130	150	170	190	210	240	260	290	310
C215QP(1)-D	макс	(л/с)	0,012	0,016	0,022	0,025	0,028	0,032	0,037	0,042	0,047	0,053	0,059	0,066	0,073	0,080	0,086
C2200D(T) F	макс	(л/ч)	100	145	210	240	270	320	370	410	470	530	590	650	710	790	840
C220QP(T)-F	макс	(л/с)	0,028	0,040	0,060	0,067	0,076	0,090	0,100	0,110	0,130	0,150	0,160	0,180	0,200	0,220	0,230



Без ограничителя Vnom указан в «Обзоре типов»

PIQCV Зональный регулирующий шаровой кран с постоянным расходом DN15,20

Размеры (мм)

L2 Максимальная глубина вкручивания H1/X1: без удлинителя штока CQ H2/X2: с удлинителем штока CQ (ZCQ-E)

Тип	DN	Rp	L	L1	L2	B1	Н	H1	H2	Υ	X1	X2	Bec
	[]	[дюймы]	[MM]	[кг]									
C215QP-B	15	1/2	96	34	13	52	26	80	112	40	125	155	0,7
C215QP-D	15	1/2	96	34	13	52	26	80	112	40	125	155	0,7
C220QP-F	20	3/4	106	39	14	63	31	85	117	45	130	165	1,1

Комбинация кран/электропривод

2-ходовый регулирующий зональный кран									CQ							
Крутящий момент	Открзакр.	3-поз.	Плавное 2—10 В =	MP-Bus шина	Охранная функция	Номинальное напряжение	Время поворота	Клеммное подключение								
Kp)	0	3-⊓	2 −	МР-Ви шина	ŏō	유	Bp.	<u> </u>			2 90 °C					
1 Нм	•	•				24 B =/~	75 c		CQ24A							
1 Нм	٠	•				24 B =/~	75 c	•	CQ24A-T							
1 Нм	•	•				230 B ~	75 c			CQ230A						
1 Нм	•	•				230 B ~	75 c	•		CQ230A-T						
1 Нм			•			24 B =/~	75 c				CQ24A-SR					
1 Нм			•			24 B =/~	75 c	•			CQ24A-SR-T					
1 Нм				•		24 B =/~	75 c					CQ24A-MPL				
1 Нм				•		24 B =/~	75 c	•				CQ24A-MPL-T				
1 Нм			•		•	24 B =/~	75 c						CQK24A-SR			
Внутр	енняя	резь	ба 2-хо	Д		Ps = 1600	кПа		Применение: закрытый контур							
						Тмакс = 90 DN [мм]	°С Vn e [л/			ΔРмакс [кПа]		ΔPs [κΠa]				
C215Q	P-B		C2150	рт-в		15	21	10		350		700				
C215Q	P-D		C2150	QPT-D		20	42	20		350		700				
C2200	P-F		C2200	PT-F		20	98	30	350 700							

CQ24A Поворотный электропривод для шаровых кранов с установкой величины kv

Схема подключения Открыто / закрыто 3-позиционное Цвет проводов: = черный = красный 3 = белый M Y2 M **Y2** Ty. 0% 0% Примечание: Возможно параллельное подключение других электроприводов с учетом мощностей

Технические данные	
Номинальное напряжение	24 B ~ 50/60 Γц / 24 B=
Диапазон номинального напряжения	19,228,8 B ~; 21,628,8 B=
Расчетная мощность	0,6 BA
Потребляемая мощность:	
— во время вращения	0,3 Вт
— в состоянии покоя	0,15 Вт
Соединение	Кабель: 1 м, 3×0,75 мм²
Параллельное подключение	Возможно, с учетом мощностей
Крутящий момент (номинальный)	1 Нм
Ручное управление	Нет
Время поворота	75 c /90 °록 (kvs = 4,5)
Индикация положения	Есть
Уровень шума	Макс. 35 дБ
Класс защиты	III для низких напряжений
Степень защиты корпуса	IP40
Температура окружающей среды	540 °C
Температура хранения	−7+50 °C
Влажность окружающей среды	95% отн., не конденсир.
Техническое обслуживание	Не требуется
Bec	≈ 200 r

Поворотный электропривод для зональных шаровых кранов

- Крутящий момент 1 Нм
- Номинальное напряжение 24 В ~/=
- Управление откр./закр. или 3-позиционное

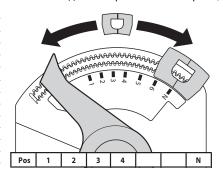
Простая установка

Простая прямая установка без дополнительных инструментов. Электропривод крепится на кране усилием руки (Важно! Прикладывать усилие на привод только вертикально). Специальные направляющие на приводе должны совпасть с отверстиями на установочном фланце крана. Положение установки привода (2 положения) относительно крана может быть выбрано с шагом 180°.

Ручное управление краном

Отсоеденить привод и вращать шар крана с его помощью.

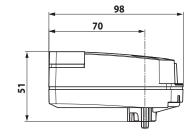
Высокая функциональная надежность

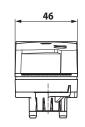

Поворотный привод может быть настроен с шагом 2,5°. Это используется для установки величины kvs.

Установка угла поворота

Поворотный привод может быть настроен начиная с 90° (А—АВ = 100%) с шагом 2,5°. Шкала соответствует 25…100% величины kvs.

Установка kvs


Отделить ограничитель и установить его в требуемое положение (без ограничителя kvs = макс. для конкретного типа крана).



Аксессуары: Покрытие корпуса привода белого цвета — ZCQ-W

Примечание. Возможна поставка модели с клеммным подключением CQ24A-T Клеммы 2,5 мм² (кабель Ø 6,3...6,8 мм, 3-проводный)

Габаритные размеры

CQ230A Поворотный электропривод для шаровых кранов с установкой величины kv

Открыто / закрыто 3-позиционное N L Вет проводов: 1 2 3 1 2 3 1 2 3 1 2 3 2 Коричневый 3 = белый Тримечание: Возможно параллельное подключение других электроприводов с учетом мощностей

Технические данные	
Номинальное напряжение	230 В ~, 50/60 Гц
Диапазон номинального напряжения	207253 B ~
Расчетная мощность	2 BA
Потребляемая мощность:	
— во время вращения	1,5 Вт
— в состоянии покоя	1,1 Вт
Соединение	Кабель: 1 м, 3×0,75 мм²
Параллельное подключение	Возможно, с учетом мощностей
Крутящий момент (номинальный)	1 Нм
Ручное управление	Нет
Время поворота	75 c /90 °⊄
Индикация положения	Есть
Уровень шума	Макс. 35 дБ
Класс защиты	II все изолировано 🗆
Степень защиты корпуса	IP40
Температура окружающей среды	540 °C
Температура хранения	−7+50 °C
Влажность окружающей среды	95% отн., не конденсир.
Техническое обслуживание	Не требуется
Bec	≈ 200 r

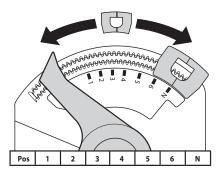
Поворотный электропривод для зональных шаровых кранов

- Крутящий момент 1 Нм
- Номинальное напряжение 230 В ~, 50/60 Гц
- Управление откр./закр. или 3-позиционное

Простая установка

Простая прямая установка без дополнительных инструментов. Электропривод крепится на кране усилием руки (Важно! Прикладывать усилие на привод только вертикально). Специальные направляющие на приводе должны совпасть с отверстиями на установочном фланце крана. Положение установки привода (2 положения) относительно крана может быть выбрано с шагом 180°.

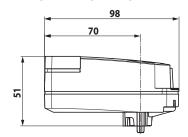
Ручное управление краном


Отсоеденить привод и вращать шар крана с его помощью.

Высокая функциональная надежность

Поворотный привод может быть настроен с шагом 2,5°. Это используется для установки величины kvs.

Установка kvs


Отделить ограничитель и установить его (без ограничителя kvs = макс. для конкретного типа крана).

Аксессуары: Покрытие корпуса привода белого цвета — ZCQ-W

Примечание. Возможна поставка модели с клеммным подключением CQ230A-T Клеммы 2,5 мм² (кабель Ø 6,3...6,8 мм, 3-проводный)

Габаритные размеры

CQ24A-SR Поворотный электропривод для шаровых кранов с установкой величины kv

Управление

Привод управляется стандартным сигналом 0(2)...10 В= и занимает положение, продиктованное

величиной управляющего сигнала.

Примечание: Возможно параллельное подключение других электроприводов с учетом мощностей

Технические данные	
Номинальное напряжение	24 B ~, 50/60 Гц; 24 B=
Диапазон номинального напряжения	19,228,8 B ~; 21,628,8 B=
Расчетная мощность	0,6 BA
Потребляемая мощность:	
— во время вращения	0,3 Вт
— в состоянии покоя	0,2 Вт
Соединение	Кабель: 1 м, 3×0,75 мм²
Параллельное подключение	Возможно, с учетом мощностей
Крутящий момент (номинальный)	1 Нм
Управляющий сигнал Ү	010 B= (при входном сопротивлении 100 Ом)
Рабочий диапазон Ү	210 B=
Ручное управление	Нет
Время поворота	75 c /90 ° ✓
Индикация положения	Есть
Уровень шума	Макс. 35 дБ
Класс защиты	III для низких напряжений
Степень защиты корпуса	IP40
Температура окружающей среды	540 °C
Температура хранения	−7+50 °C
Влажность окружающей среды	95% отн., не конденсир.
Техническое обслуживание	Не требуется
Bec	≈ 200 r

Поворотный электропривод для зональных шаровых кранов

- Крутящий момент 1 Нм
- Номинальное напряжение 24 В ~/=
- Управление плавное

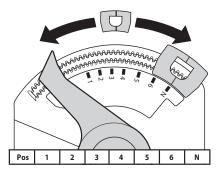
Простая установка

Простая прямая установка без дополнительных инструментов. Электропривод крепится на кране усилием руки (Важно! Прикладывать усилие на привод только вертикально). Специальные направляющие на приводе должны совпасть с отверстиями на установочном фланце крана. Положение установки привода (2 положения) относительно крана может быть выбрано с шагом 180°.

Ручное управление краном

Отсоеденить привод и вращать шар крана с его помощью.

Высокая функциональная надежность

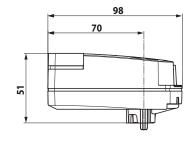

Поворотный привод может быть настроен с шагом 2,5°. Это используется для установки величины kvs.

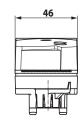
Установка угла поворота

Поворотный привод может быть настроен начиная с 90° (A–AB = 100%) с шагом 2.5°. Шкала соответствует 25...100% величины kvs.

Установка kvs

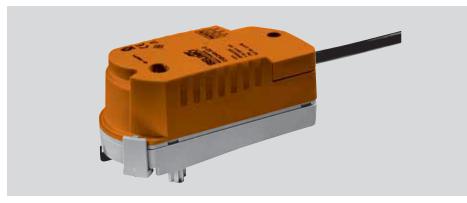
Отделить ограничитель и установить его в требуемое положение (без ограничителя kvs = макс. для конкретного типа крана).

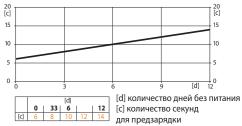



При изменении угла поворота привода (величины kvs) нажать на корпусе привода кнопку "Adaption" (адаптация управляющего сигнала к рабочему ходу привода)

Аксессуары: Покрытие корпуса привода белого цвета — ZCQ-W

Примечание. Возможна поставка модели с клеммным подключением CQ24A-SR-T Клеммы 2,5 мм 2 (кабель Ø 6,3...6,8 мм, 3-проводный)


Габаритные размеры



CQK24A-SR Поворотный электропривод для шаровых кранов с установкой величины kv

Время предварительной зарядки. В случае привода со встроенным конденсатором требуется определенное время для зарядки конденсатора. Это время для зарядки конденсатора до уровня, позволяющего приводу работать. В этом случае зарядки хватит на то, чтобы при отключении питания привод занял охранное положение.

Время предварительной зарядки зависит от продолжительности нахождения привода без подключения питания.

Условия поставки (конденсатор). Электропривод поставляется с завода-изготовителя в полностью разряженном состоянии. Для приведение его в рабочее состояние (заряда конденсатора до определенного уровня) необходимое время предварительной зарядки составляет 25 с.

Технические данные	
Номинальное напряжение	24 B ~ 50/60 Γц / 24 B=
Диапазон номинального напряжения	19,228,8 B ~; 21,628,8 B=
Расчетная мощность	0,5 BA
Потребляемая мощность:	
— во время вращения	2,5 Вт
— в состоянии покоя	0,5 Вт
Соединение	Кабель: 1 м, 3×0,75 мм²
Параллельное подключение	Возможно, с учетом мощностей
Крутящий момент (номинальный)	1 Нм
Управляющий сигнал Ү	010 B= (при входном сопротивлении 100 Ом)
Крутящий момент (номинальный)	210 B=
Ручное управление	Нет
Время поворота двигатель	75 c /90 °⊄
Время поворота охранная функция	60 c /90 °⊄
Индикация положения	Есть механическая
Уровень шума двигатель	Макс. 35 дБ
Уровень шума охранной работы	Макс. 35 дБ
Класс защиты	III для низких напряжений
Степень защиты корпуса	IP40
Температура окружающей среды	540 °C
Температура хранения	−7+50 °C
Влажность окружающей среды	95% отн., не конденсир.
Техническое обслуживание	Не требуется
Bec	≈ 200 r

При изменении угла поворота привода (величины kvs) нажать на корпусе привода кнопку «Adaption» (адаптация управляющего сигнала к рабочему ходу привода)

Поворотный электропривод с охранной функцией для зональных шаровых кранов

- Крутящий момент 1 Нм
- Номинальное напряжение 24 В ~/=
- Управление плавное

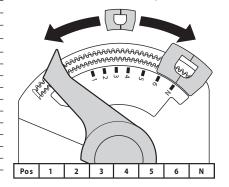
Простая установка

Простая прямая установка без дополнительных инструментов. Электропривод крепится на кране усилием руки (Важно! Прикладывать усилие на привод только вертикально). Специальные направляющие на приводе должны совпасть с отверстиями на установочном фланце крана. Положение установки привода (2 положения) относительно крана может быть выбрано с шагом 180°.

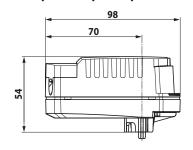
Управление

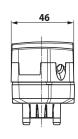
Привод управляется стандартным сигналом 0(2)...10 В= и занимает положение, продиктованное величиной управляющего сигнала. Одновременно с этим заряжается встроенный конденсатор. При отключении привод перемещается в охранное положение (РОР) за счет запасенной в конденсаторе энергии с учетом задержки 1 с, установленной на заводе.

Ручное управление. Отсоеденить привод и вращать шар крана с его помощью.

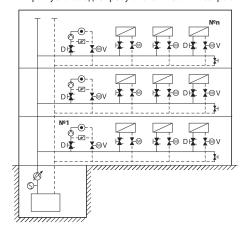

Высокая функциональная надежность

Электропривод защищен от перегрузки, не требует конечных выключателей, останавливается автоматически при достижении конечных положений. Поворотный привод может быть настроен с шагом 2.5°. Это используется для установки величины kvs.


Установка угла поворота. Поворотный привод может быть настроен начиная с 90° (A-AB = 100%) с шагом 2.5°.


Установка kvs

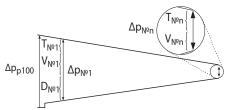
Отделить ограничитель и установить его в требуемое положение (без ограничителя kvs = макс. для конкретного типа крана – устанавливается для 3-ходового крана).



Аксессуары: Покрытие корпуса привода белого цвета — ZCQ-E

Поставленная задача

Одним из наиболее важных требований при разработке современных проектов является обеспечение максимального комфорта в сочетании с энергосбережением, достигаемое при помощи экономичных технических решений. В то же время правильный подбор регулирующего устройства и профессиональная гидравлическая балансировка всей системы при пусконаладке требуют значительных затрат.


Пример: Многоэтажное офисное здание

Как правило, традиционные клапаны имеют степень регулирования 0,5 и устанавливаются перед каждым потребляющим устройством (воздухонагревателями, теплообменниками). Однако, условия работы потребляющих устройств очень сильно зависят

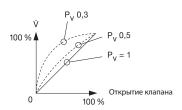
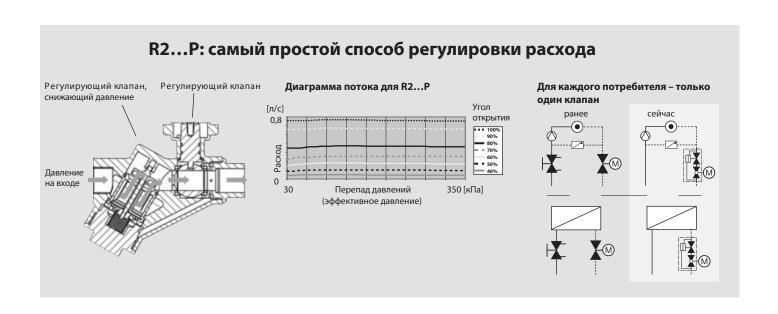

от расположения и нагрузки. В случае устройств по ветке N° 1, расположенных вблизи главного циркуляционного насоса, перепад давлений в подающем и обратном трубопроводах намного выше, чем в конце трубопровода N° п. При номинальном расходе требуемый перепад давлений $\Delta PV100$ на насосе зависит от диаметра и протяженности трубопровода, а также от потери давления на последнем потребителе.

Диаграмма давлений при полной загрузке

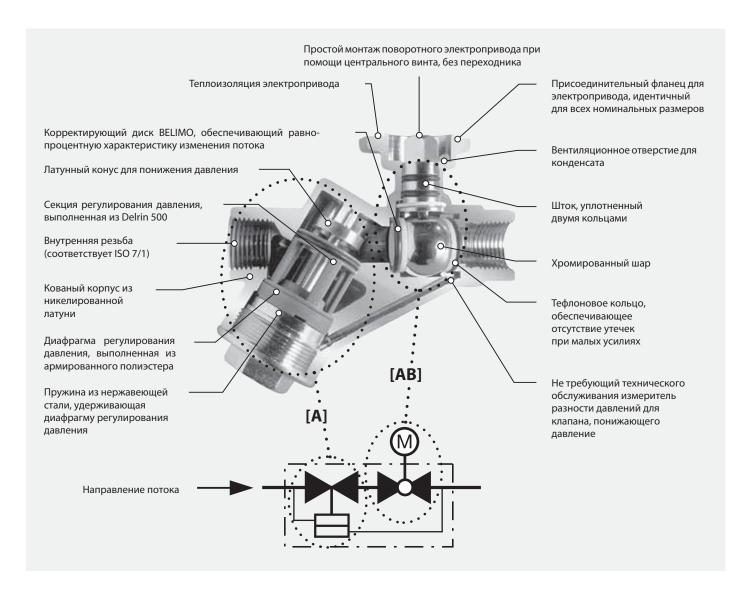
Перепад давлений ΔP № 1 является суммой потери давления на потребителе T № 1, клапане V № 1 и балансирующем клапане D № 1. Это утверждение верно при полностью открытом клапане V № 1.

При закрытии регулирующего клапана перепад давлений может увеличиться вплоть до величины $\Delta P \ N^0 \ 1$, степень регулирования при этом значительно снижается и расход теплоносителя по остальным веткам системы увеличивается непропорционально.


Степень регулирования Ру

Решение

В ходе усовершенствования хорошо известного и многократно проверенного в эксплуатации регулирующего шарового клапана BELIMO конструкция клапана была доработана, в результате чего появился регулирующий клапан с постоянным расходом серии R2...Р. При повышении перепада давления клапан регулирования давления закрывается и обеспечивает постоянный расход теплоносителя. При этом расход не зависит от перепада давлений, а только от угла открытия клапана. Степень регулирования клапана всегда равна 1, даже при использовании клапанов больших диаметров, чем требуется.


Преимущества

Не требуются балансировочные вентили, обвязка потребляющих устройств намного упрощается — для каждого потребителя требуется только один клапан. Таким образом, существенно сокращаются расходы и одновременно повышается степень удобства.

Принцип действия

Характеристики

Клапан с постоянным расходом R2...Р состоит из двух клапанов: саморегулирующийся клапан, понижающий давление [А] и регулирующий клапан [АВ], обеспечивающий равнопроцентную характеристику потока. При повышении перепада давлений клапан, понижающий давление, закрывается и обеспечивает постоянное давление на клапане регулировки потока. Это необходимо для поддержания постоянного расхода ±5% (при перепаде давлений в диапазоне от 30 до 350 кПа) при любом угле открытия регулирующего клапана.

Подбор

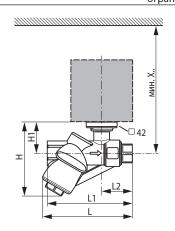
Номенклатура клапанов с постоянным расходом, оборудованных электроприводами, находится в диапазоне практического применения. Все клапаны:

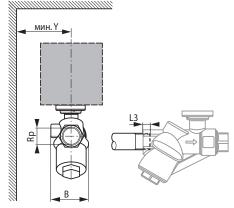
- являются 2-ходовыми с наиболее часто применяемыми диаметрами (DN 15...50)
- разработаны для расходов от 0,1 л/с до 5,5 л/с

Соответствующие электроприводы

Оптимальное функционирование клапана с постоянным расходом BELIMO обеспечивается при помощи соответствующего элект-ропривода. В зависимости от применения, клапаны могут снабжаться поворотными электроприводами различных модификаций. Необходимая модификация может быть подобрана из серий LR...A, SR...A, NR... и др. В номенклатуре имеются модели с плавной регулировкой 0...10 В= или 3-позиционным управлением.

Комбинация клапан / электропривод


						К	R	LR	RQ/ RC/ NRFD	NR/N NR	RC/	SF	RP	SR/S	SRF
					нная ция										
		Время срабатывания	(Управ Раб. ди	ление) іапазон	- Охранная функция	80)°C				DN15/DN DN25DI				
Откр-закр,	24B~/=	75 c				KF	R24								
3-поз.		90 c						LR24	4A(-S)	NR24	4A(-S)	SR	24P	SR24	IA(-S)
	230B~	75 c				KR	230								
		90 c						LR23	0A(-S)	NR23	0A(-S)	SR2	30P	SR23	0A(-S)
		Мотор 35 с / пружина <20 с			•)230A- 2)(-O)						
		Мотор 90 с / пружина <20 с			•					1	A-3(-S2) O)				
Плавное	24B~/=	9 c	(0)0,5	.10 B=				LRQ2	4A-SZ	NRQ2	4A-SZ				
			(0)21	0 B=				LRQ2	4A-SR	NRQ2	4A-SR				
		35 c	(0)21	0 B=				LRC2	4A-SR						
		45 c	(0)21	0 B=						NRC2	4A-SR				
		75 c	(0)21	0 B=		KR2	4-SR								
		90 c	(0)21	0 B=				LR24	4A-SR	NR24	4A-SR	SR24	IP-SR	SR24	IA-SR
		Мотор 90 с / пружина <20 с	(0)0,5	.10 B=	•						24A- (2)(-O)			1	i-SZ(-S2) O)
		Мотор 150 с / пружина <20 с	(0)21		-@			LRF:	24-SR						
Внутрення : 2-ход	я резьба Rp	•	Ps = 16 Тмакс =	00 кПа : 80°C/ 1 	00°C		енение тый кон			I		I		ı	
0		8	DN [мм]	Rp	V [л/с]	Др ₅ [кПа]	Др макс [кПа]	Др ₅ [кПа]	Др макс [кПа]	Др ₅ [кПа]	Др макс [кПа]	Др ₅ [кПа]	Др макс [кПа]	Др ₅ [кПа]	Др макс [кПа]
R215P-010	/ R215P-020	/ R215P-040	15	1/2"	0,1 / 0,2 / 0,4	700	350	700	350	700	350	700	350	700	350
R220P-040	R220P-040 / R220P-060			3/4"	0,4/ 0,6			- 1	1	-1	1	- 1	- 1	1	- 1
R225P-070 / R225P-110		25	1"	0,7/1,1			700	350	ı	1	1	1	ı	ı	
R232P-120	R232P-120 / R232P-160		32	11⁄4″	1,2 / 1,6					700	350	700	350		
R240P-180	/ R240P-220		40	1½″	1,8 / 2,2					ı	ı			ı	ı
R250P-270			50	2"	2,7					700	350			1	- 1
R250P-550			50	2"	5,5									700	350



- закрытые системы горячей и холодной воды
- для плавного регулирования воды в системах подготовки воздуха и отопления

Среда	Холодная и горячая вода (содержание гликоля макс 50%)
Температура среды	DN 15 DN 20: +5+100°C DN 25DN 50: +5+80°C температуры ниже по запросу
Эффективное давление	30350 кПа
Запирающее давление ΔPs	700 кПа
Уровень утечки	Герметичен, класс утечки IV при 350 кПа
Характеристика потока	Равно-процентная
Допустимое отклонение величины потока	При перепаде давления 35…350 кПа: ±10% При давлении ниже эффективного: +15%
Трубное присоединение	Внутренняя резьба
Угол поворота	90° (рабочий диапазон 1590°)
Положение установки	От вертикального до горизонтального (относительно штока)
Тех. обслуживание	Не требуется
Тело клапана	DN 15 DN 20: штампованное, никелированная латунь DN 25 DN 50: литое, никелированная латунь
Конус клапана и шток	Хромированная латунь
Уплотнение штока	Кольцо / EPDM
Уплотнение шара	PTFE, Кольцо Viton
Корректирующий диск	DN 15 DN 20: латунь DN 25 DN 50: TEFZEL
Секция регулирования давления	Латунь
Диафрагма	Усиленный полиэстером силикон
Пружина для конуса клапана	Нержавеющая сталь
Термины:	Vnom - номинальный поток через полностью открытый клапан Vmax - максимальный поток, установленный ограничением угла поворота привода

Тип	DN [мм]	Vnom [л/c]	Vnom	Rp [дюймы]	Ps [кПа]
R215P-010	15	0,1	0.040.1 л/с	1/2	1600
R215P-020	15	0,2	45100% от Vnom	1/2	1600
R215P-040	15	0,4	45100% от Vnom	1/2	1600
R220P-040	20	0,4	45100% от Vnom	3/4	1600
R220P-060	20	0,6	45100% от Vnom	3/4	1600
R225P-070	25	0,7	45100% от Vnom	1	1600
R225P-110	25	1,1	45100% от Vnom	1	1600
R232P-120	32	1,2	45100% от Vnom	1 1⁄4	1600
R232P-160	32	1,6	45100% от Vnom	1 1⁄4	1600
R240P-180	40	1,8	45100% от Vnom	1 ½	1600
R240P-220	40	2,2	45100% от Vnom	1 ½	1600
R250P-270	50	2,7	45100% от Vnom	2	1600
R250P-550	50	5,5	45100% от Vnom	2	1600

Управление

Регулирующий клапан управляется при помощи поворотного электропривода. Поворотные электроприводы управляются стандартным сигналом 0...10 В или по 3-позиционной схеме и поворачивают шарвнутри крана — регулирующее устройство — в открытое положение согласно управляющему сигналу. Кран открывается в направлении против часовой стрелки и закрывается по часовой стрелке.

Характеристика потока

Равно-процентная характеристика потока обеспечивается встроенным корректирующим диском.

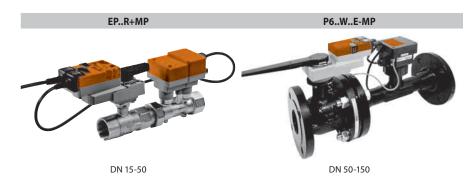
Постоянный поток

Благодаря встроенному клапану, понижающему давление, в диапазоне эффективного давления 30...350 кПа расход теплоносителя остается постоянным. Степень регулирования клапана всегда равна 1, даже при использовании клапанов больших диаметров, чем требуется. Даже при частичной нагрузке расход теплоносителя остается постоянным при любом угле открытия клапана и обеспечивает устойчивый контроль.

Электропривод

Подбор электропривода производится в зависимости от типа и размера крана.

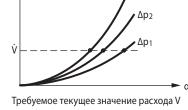
Тип	DN [мм]	Rp [дюймы]	L [мм]	L1 [мм]	L2 [мм]	L3 [мм]	В [мм]	Н [мм]	Н1 [мм]	Y [мм]	Х2 [мм]	X3 [MM]	Вес прибл. [кг]
R215P-010	15	1/2"	119	114	38	13	51	94	36	70	200	250	0,9
R215P-020	15	1/2"	119	114	38	13	51	94	36	70	200	250	0,9
R215P-040	15	1/2"	119	114	38	13	51	94	36	70	200	250	0,9
R220P-040	20	3/4"	126	126	43	14	51	94	36	70	200	250	0,9
R220P-060	20	3/4"	126	126	43	14	51	94	36	70	200	250	0,9
R225P-070	25	1″	179	179	63	16	82	121	46	70	200	250	2,8
R225P-110	25	1″	179	179	63	16	82	121	46	70	200	250	2,8
R232P-120	32	11⁄4″	221	221	62	19	87	140	51	70	200	250	3,8
R232P-160	32	11⁄4″	221	221	62	19	87	140	51	70	200	250	3,8
R240P-180	40	1½"	204	204	65	19	87	140	51	70	200	250	3,6
R240P-220	40	1½"	204	204	65	19	87	140	51	70	200	250	3,6
R250P-270	50	2″	225	225	74	23	87	146	57	70	200	250	4,4
R250P-550	50	2"	426	397	83	22	132	224	76	70	200	250	12,3


L3: Максимальная глубина вкручивания

У/X2: Минимальное расстояние от центра крана с приводом LR..А У/X3: Минимальное расстояние от центра крана с приводом NR.. Размеры привода указаны в его технических данных

EPIV — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-ходовой

- Номинальное напряжение 24 В~/=
- Управление: плавное регулирование
- Для закрытых систем горячей и холодной воды
- Для плавного регулирования водяного потока в системах обработки воздуха и системах отопления
- Коммуникация по Belimo MP-Bus или обычным путем
- Конвертирование сигналов активных датчиков и переключающих контактов


EPIV (Electronic Pressure Independent Valve — комбинированный клапан с настраиваемым расходом, не зависящим от перепада давления) является следующим этапом в развитии линейки клапанов Белимо PICCV (Pressure Independent Characterised Control Valve). Новые клапаны EPIV ДУ 15—150 дополняют существующие клапаны PICCV ДУ 15—50 мм.

Клапаны EPIV выполняют четыре функции — измерение расхода, управление с помощью электропривода, динамическую балансировку системы и запорную функцию. Значительно упрощается корректный подбор регулирующего органа — не требуется расчет перепадов давления для определения Kvs, подбор осуществляется только по расходу тепло- или холодоносителя. С помощью корректирующего диска специального сечения достигается максимальное качество регулирования, а полная герметичность клапана обеспечивает дополнительное энергосбережение. Настройка системы (расходов) осуществляется максимально просто и быстро. Балансировка системы происходит автоматически (динамическая балансировка)

Принцип действия

EPIV состоит из трех частей — регулирующего шарового клапана с коррекционным диском, измерительной трубки с расположенным на ней датчиком скорости среды и контроллером, а также электропривода. На электроприводе устанавливается максимальное значение расхода Vmax в диапазоне от Vnom. При этом установленное значение Vmax автоматически привязывается к верхней границе диапазона управляющего сигнала (как правило, 10 В). Поскольку клапан обладает равнопроцентной характеристикой регулирования, зависимость расхода от величины управляющего сигнала также является равнопроцентной.

Стандартный управляющий сигнал электропривода (заводская уставка) -0(2)...10 В. Привод может также работать в сети ВАСпеt или MP-Bus. Расход тепло-/холодоносителя, протекающего через измерительную трубку, измеряется с помощью датчика. В вычислительном блоке электропривода измеренное датчиком значение расхода сравнивается с заданным значением. Формируется сигнал рассогласования, на основании которого электропривод перемещает шар регулирующего шарового клапана в необходимое положение. Угол поворота шара α изменяется в зависимости от изменения перепадов давлений в системе, при этом осуществляется динамическая балансировка системы и обеспечивается поддержание необходимого расхода среды. Максимальное значение расхода Vmax может быть задано в диапазоне 30...100% от номинального паспортного значения Vnom для EPIV DN 15—50 или 45...100% от Vnom для EPIV DN 65—150. При этом наименьшее эффективно контролируемое количество тепло- или холодоносителя составляет 1% от Vnom для EPIV DN 15—50 или 2,5% от Vnom для EPIV DN 65—150. Обратная связь U5 отображает измеренное значение расхода в вольтах (2...10 В=). Кроме того, обратная связь U5 может отображать угол открытия клапана.

 $\Delta p_1 < \Delta p_2 < \Delta p_3$

Δр3

Требуемое текущее значение расхода V при изменении перепада давления на клапане Δр обеспечивается изменением угла поворота α.

Таким образом, текущее значение расхода V не зависит от перепадов давления в системе, а изменяется только путем изменения управляющего сигнала, поступающего на привод.

Минимальный перепад давления на клапане Δpmin для корректной работы (стабильного поддержания расхода) зависит от DN клапана и соотношения Vmax / Vnom. Значения Δpmin находятся в диапазоне от 2 кПа и выше (см. далее).

Тип	DN (мм)	DN (дюймы)	Vnom (л/с)	Vnom (л/мин)	Kvs теор (м³/час)	PN	n(gl)
EP015P+MP	15	1/2	0,35	21	2,9	16	3,2
EP020P+MP	20	3/4	0,65	39	4,9	16	3,2
EP025P+MP	25	1	1,15	69	8,6	16	3,2
EP032P+MP	32	1 1/4	1,8	108	14,2	16	3,2
EP040P+MP	40	1 1/2	2,5	150	21,3	16	3,2
EP050P+MP	50	2	4,8	288	32,0	16	3,2
Р6065\Л/800Е-МР	65	2½	8	480	45	16	3,2
Р6080\Л/1100Е-МР	80	3	11	660	65	16	3,2
Р6100\Л/2000Е-МР	100	4	20	1200	115	16	3,2
Р6125\Л/3100Е-МР	125	5	31	1860	175	16	3,2
P6150\Л/4500E-MP	150	6	45	2700	270	16	3,2

ехнические х	карактеристики
--------------	----------------

		EPR+MP	P6WE-MP		
Электрические	Номинальное напряжение	24 B ~, 50 Γц / 24 B=	24 B ~, 50 Гц / 24 B=		
параметры	Диапазон номинального напряжения	19,228,8 B ~ / 21,628,8 B=	19,228,8 B ~ / 21,628,8 B=		
	Расчетная мощность	DN 1525 3,5 BA / DN 3250 4,5BA	14 BA		
	Потребляемая мощность:				
	— во время вращения— в состоянии покоя	DN 1525 4 BT / DN 3250 5 BT DN 1525 3,7 BT / DN 3250 3,9BT	10 Вт 8,5 Вт		
	Соединение	Кабель: 1 м , 4 х 0,75 мм²	Кабель: 1 м , 6 х 0,75 мм²		
	Подключение Ethernet	Разъем RJ45	Разъем RJ45		
	Параллельное управление	Возможно (с учетом производительн	ности)		
Функциональные данные	Крутящий момент (номинальный)	5 Нм (DN 1525) / 10 Нм (DN 32+40) / 20 Нм (DN 50)	20 Hм (DN 6580) / 40 Hм (DN 100150)		
	Позиционирующий сигнал Y Рабочий диапазон Y	010 B = 210 B =	010 B = 210 B =		
	Рабочий сигнал Ү настраиваемый	Старт 0.524 B = Стоп 8.532 B=	0,510 B =		
	Сигнал обратной связи U	210 B =	210 B =		
	Сигнал обратной связи U	Старт 0.58 В =	010 B =		
	настраиваемый	Стоп 210 В =	0,510 B =		
	Уровень шума двигателя	45 дБ (A)	45 дБ (A)		
	Настраиваемая величина расхода Vmax	30100% от Vnom	45100% от Vnom		
	Точность управления	±10% (от 25100% Vnom)	±10% (от 25100% Vnom)		
	Примечание к точности управления	±6% (от 25100% Vnom) при 20 °С / 0% гликоля			
	Среда	Холодная и горячая вода (содержан	ие гликоля макс 50%)		
	Температура среды	−10 +120 °C	−10 +120 °C		
	Запирающее давление ΔPs	1400 кПа	690 кПа		
	Дифференциальное давление ΔPmax	350 кПа	340 кПа		
_	Дифференциальное давление ΔPmax	200 кПа для бесшумной работы			
	Температура среды	−10 +120 °C	–10 +120 °C		
	Запирающее давление ΔPs	1400 кПа	690 кПа		
Функциональные данные	Кривая расхода	Равно-процентная, оптимизирована изменена на линейную)	в диапазоне открытия (может быть		
	Уровень утечки	А , Герметичен	А , Герметичен		
	Трубное соединение	Внутренняя резьба	Фланцы PN16		
	Положение установки	От вертикального до горизонтально	<u> </u>		
	Тех. обслуживание	Не требуется	Не требуется		
	Ручное управление	Выведение из зацепления механиче может фиксироваться	ского редуктора с помощью кнопки,		
Измерение потока	Принцип измерения	Ультразвуковое измерение расхода среды	Магнитное индуктивное измерение расхода среды		
	Точность измерения	±6% (от 25% до 100% от Vnom)	±6% (от 25% до 100% от Vnom)		
	Примечание к точности измерения	±2% (от 25100% Vnom) при 20°C / 0% гликоля			
	Минимальный измеряемый поток	1% при Vnom	2,5 % при Vnom		
Безопасность	Класс защиты	III (для низких напряжений)	III (для низких напряжений)		
	Степень защиты корпуса	IP54			
	Электромагнитная совместимость	СЕ в соответствии с 2004/108/ЕС	СЕ в соответствии с 2004/108/ЕС		
	Номинальный импульс напряжения	0,8 кВ	0,8 кВ		
	Температура окружающей среды	−3050 °C	–1050 °C		
	Температура хранения	–40…80 °C	−20…80 °C		
	Влажность окружающей среды	95% отн., не конденсир.	95% отн., не конденсир.		
Материалы	Тело клапана	Латунь	Чугун GG25 с защитным покрытием		
	Измерительный участок	Никелированная латунь	Чугун GGG50 с защитным покрытием		
	Запирающий элемент	Нержавеющая сталь	Нержавеющая сталь		
	Шток	Нержавеющая сталь	Нержавеющая сталь		
	Уплотнение штока	О-образное кольцо EPDM	EPDM Perox		

EPIV — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-ходовой

Описание устройства

Характеристики регулирования

Специально сконфигурированные параметры управления в связи с точным датчиком расхода обеспечивают стабильное качество управления. Они, однако, не подходят для быстрых процессов управления, напр. для управления потоком воды бытового назначения

Определения

Vnom — максимально возможное значение расхода при значении скорости теплоносителя от 2 до 2,4 м/с в трубопроводе соответствующего диаметра. Например, для ДУ65 сечение трубопровода составляет ориентировочно $0.065 \, \mathrm{m}^2 \times 3.14 \, / \, 4 = 0.0033 \, \mathrm{m}^2$. При скорости 2,4 м/с, расход составит 480 л/мин или 28,8 м³/час.

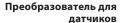
Vmax — максимальное значение расхода в системе. Задается в диапазоне 30...100% от Vnom для Energy Valve DN 15...50 и 45...100% от Vnom для Energy Valve DN 65...150. При этом Vmax соответствует управляющему сигналу 10 B.

Vmin — заводская уставка 0% (не может быть изменена). Производительность Qmax это установленный в режиме управления мощностью максимальный выход тепла на теплообменнике

Компенсация при низком расходе

При низкой скорости потока через открытый клапан, измеритель не может регистрировать его в пределах заданной погрешности. В таком случае расход учитывается электронным способом

Открывание клапана


Клапан остается закрытым до тех пор, пока не подан управляющий сигнал Y, соответствующий 1% (DN 15—50) и 2,5% (DN 65—150) от Vnom. Регулирование согласно характеристической кривой клапана активируется после того, как превышается это значение.

Закрывание клапана

Регулирование согласно характеристической кривой клапана активно до тех пор, пока расход не достигает 1% (DN 15—50) и 2,5% (DN 65—150) от Vnom. Когда расход падает ниже этого значения, то он поддерживается на уровне 1% (2,5%) Vnom. Если расход падает ниже 0,5% Vnom согласно переменного управляющего сигнала Y, клапан закрывается.

Инверсия управляющего сигнала

Инверсия может быть осуществлена в случае применения аналогового сигнала в качестве управляющего. Это изменяет стандартный способ управления — в этом случае 0% управляющего сигнала соответствует установке Vmax или Qmax, а в случае максимального управляющего сигнала клапан закрывается

Опция для подключения датчика (активный датчик или переключающий контакт). Электропривод MP выполняет функцию аналогового/цифрового преобразователя для передачи сигнала датчика по сети MP-Bus в систему более высокого уровня

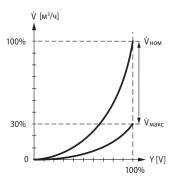
Электроприводы с устанавливаемыми параметрами

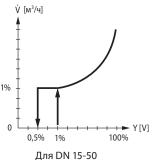
Заводские установки соответствуют наиболее общим случаям применения устройства. Входные и выходные сигналы могут быть изменены при помощи ZTH EU (сервисного устройства BELIMO), или программы MFT-P.

Гидравлическая балансировка

Через интегрированный веб-сервер, максимальный расход (эквивалентно требованию 100%) можно регулировать непосредственно на самом устройстве, просто и надежно, в несколько шагов. Если устройство интегрировано в систему управления, то балансировка может осуществляться непосредственно с помощью системы управления.

Ручное управление

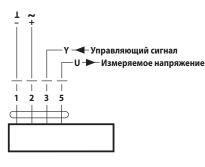

Возможно ручное управление при помощи кнопки (зубчатый редуктор выведен из зацепления пока кнопка нажата или заблокирована).

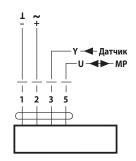

Высокая функциональная надежность

Электропривод защищен от перегрузок, не требует конечных выключателей и останавливается автоматически при достижении конечных положений.

Базовое положение

При включении напряжения питания первый раз, например, при вводе в эксплуатацию или после нажатия переключателя «вывод редуктора из зацепления» электропривод перемещается в базовое положение. Затем привод перемещается в положение, продиктованное управляющим сигналом.


EPIV — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-ходовой



Электрическое подключение (аналоговое и по протоколу MP-Bus)

- Подключать через изолированный трансформатор! Возможно параллельное под-
- ключение других электроприводов с учетом мощностей.

Цвет кабеля:

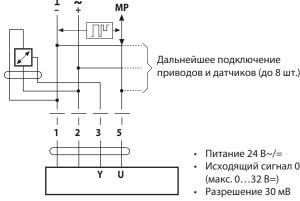
- 1 = черный
- 2 = красный
- 3 = белый
- 5 = оранжевый

Функционирование при работе в сети MP-Bus

Подключение по сети MP-Bus

Питание и коммуникация

По одному и тому же 3-проводному кабелю


- нет необходимости в экранировании и скрутке
- нет необходимости в закрывающем резисторе

Топология

Нет ограничений в выборе топологии сети (разрешены звездообразная, кольцевая, древовидная или гибридная)



Подключение активных датчиков

- Исходящий сигнал 0—10 В
- Разрешение 30 мВ

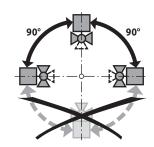
Подключение внешнего переключающего контакта

- - Ток переключения 16 мА на 24 В
- Начальное значение диапазона управления должно быть запрограммировано на МР приводе как ≥ 0,6 В

Требования по безопасности

Безопасность:

- Клапан разработан для использования в системах отопления, вентиляции и кондиционирования и не применяется в областях, выходящие за рамки, указанные в спецификации, особенно для применения на воздушных суднах.
- Устройство может устанавливаться только обученным персоналом. В процессе установки должны быть учтены все рекомендации завода-изготовителя.
- Клапан не содержит частей, которые могут быть переустановлены или отремонтированы
- Недопустимо отсоединение регулирующего клапана от измерительной трубы.
- Устройство содержит электрические и электронные компоненты, запрещенные к утилизации вместе с бытовыми отходами. Необходимо соблюдать все действующие правила и инструкции, относящиеся к данной конкретной местности.



EPIV — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-ходовой

Особенности установки

Рекомендуемые положения установки

Электропривод может устанавливаться в **горизонтальном** или **вертикальном** положении. Не допускается установка регулирующего клапана с корректирующим диском в висящем положении, например, когда шток направлен вниз.

Установка на секции обратной воды

В качестве общего правила, кран устанавливается на обратной воде.

Требования к качеству воды

Регулирующий шаровой кран является относительно чувствительным устройством. С целью обеспечения его продолжительной работы рекомендуется использовать фильтры. Для DN 65—150 минимальная проводимость среды $> 20~\mu s/cm$, не допускается применение полностью опресненной или деминерализованной воды

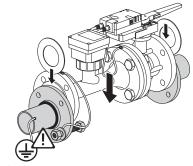
Техническое обслуживание

Регулирующие краны и поворотные электроприводы не требуют технического обслуживания.

Перед началом проведения любых сервисных работ, убедитесь, что электропривод, установленный на шаровом кране, отключен от электропитания (путем отсоединения питающего кабеля). Все насосы в прилегающих участках должны быть также отключены и соответствующие участки трубопровода заглушены. При необходимости перед проведением работ систему нужно охладить, а давление внутри системы снизить до атмосферного.

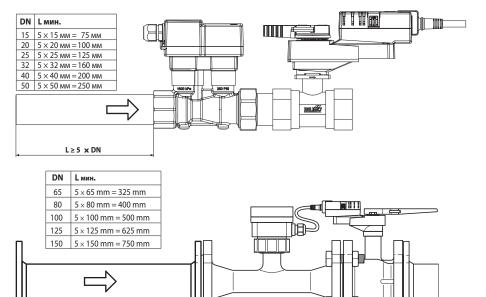
Система не может быть включена обратно до тех пор, пока шаровой кран не будет установлен на место согласно инструкции и соединения не изолированы должным образом.

Направление потока


Необходимо соблюдать направление потока, указанное стрелкой на корпусе крана. В противном

случае, расход будет измерен неправильно.

 $L \geq 5 \times DN$


Заземление

Обязательным условием эксплуатации является правильное заземление измерительной трубы чтобы и датчик скорости не производил ненужные ошибочные измерения.

Входная секция

С целью достижения высокой точности измерения необходимо обеспечить наличие специального участка трубы для снижения скорости потока в противоположной стороне от фланца измерительной трубы. Длина участка должна быть не менее $5 \times DN$

EPIV — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-ходовой

Информация по подбору клапана и определению перепада давления

Выбор клапана Клапан определяется исходя из максимального необходимого потока Vmax.

Расчет Kvs не требуется

Vmax = 30 ... 100% от Vnom для DN 15...50 Vmax = 45 ... 100% от Vnom для DN 65...150

Если данные о гидравлической системе отсутствуют, можно выбрать клапан, соответствующий по диаметру

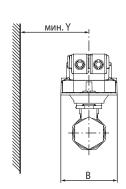
с номинальным диаметром теплообменника

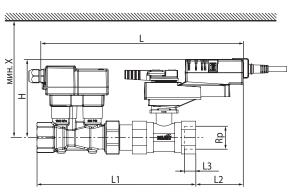
Минимальное дифференциальное давление (падение давления) Минимальное необходимое дифференциальное давление (падение давления на клапане) для достижения желаемого расхода потока Vmax может быть рассчитана с помощью теоретического значения Kvs (см обзор типов) и нижеследующей формулы.

Формула:

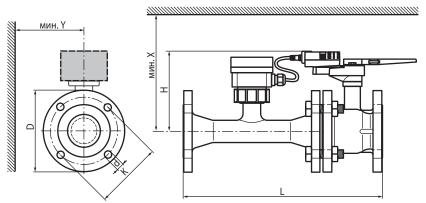
$$\Delta p_{\text{MMH}} = 100 \times \left(\frac{\dot{V}_{\text{MAKC}}}{k_{\text{Vs Teop.}}}\right)^2 \qquad \begin{bmatrix} \Delta p_{\text{MMH}} \colon \kappa \Pi A \\ \dot{V}_{\text{MAKC}} \colon \ \text{M}^3 / \text{u} \\ k_{\text{Vs Teop.}} \colon \ \text{M}^3 / \text{u} \end{bmatrix}$$

Пример: (DN25 требуемый максимальный расход = 50% от Vnom)


EV025R+BAC Kvs Teop. = $8,6 \text{ m}^3/\text{y}$


Vnom = 69 л/мин

 $50\% \times 69$ л/мин = 34,5 л/мин = 2,07 м³/ч


$$\Delta p_{\text{MMH}} = 100 \times \left(\frac{\dot{V}_{\text{MaKC}}}{k_{\text{vs reop.}}}\right)^2 = 100 \times \left(\frac{2,07 \text{ M}^3 \text{ч}}{8,6 \text{ M}^3 \text{ч}}\right)^2 = 6 \text{ κΠa}$$

Размеры / вес

Тип	DN	Rp	L	L1	L2	L3	В	Н	Х	Υ	Вес приблиз.
	(MM)	(дюймы)	(MM)	(кг)							
EP015R+MP	15	1/2	276	191	81	13	75	125	195	77	1,5
EP020R+MP	20	3/4	283	203	75	14	75	125	195	77	1,8
EP025R+MP	25	1	296	231	71	16	75	127	197	77	2,0
EP032R+MP	32	1 1/4	322	254	68	19	75	131	201	77	2,8
EP040R+MP	40	1 1/2	332	274	65	19	75	141	211	77	3,3
EP050R+MP	50	2	339	284	69	22	75	142	212	77	4,4

Тип	DN	L	н	D	d	K	Х	Υ	Вес приблиз.
	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(кг)
P6065W800EV-MP	65	454	200	185	4 × 19	145	220	150	25
P6080W1100EV-MP	80	499	200	200	8 × 19	160	220	160	30
P6100W2000EV-MP	100	582	220	229	8 × 19	180	240	175	47
P6125W3100EV-MP	125	640	240	252	8 × 19	210	260	190	58
P6150W4500EV-MP	150	767	240	282	8 × 23	240	260	200	73

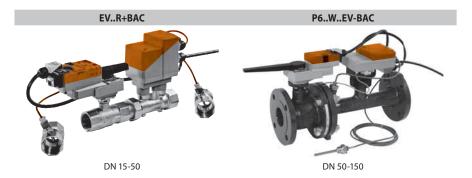
EPIV — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, 2-ходовой

Комбинация кран / электропривод

							SI	R	N	R	GI	R
	Время срабатывания		(Управление) Раб. диапазон					(\supset	
Плавное 24 В~/=	90 c	(0)	(0) 0,510 В= по выбору									
По шине 24 В~/=	90 c	MI	MP-Bus									
Внутренняя резьба		p s = 16 0 Тмакс =						Применение : закрытый контур				
2-ход		V [л/c]	nom [л/мин]	k vs теор. 1) [м³/час]	[MM]	DN [дюйм]	Др ₅ [кПа]	Др макс [кПа]	Др ₅ [кПа]	Δр макс [кПа]	Др ₅ [кПа]	Δр макс [кПа]
EP015R+MP		0,35	21	2,9	15	1/2"	1400	350				
EP020R+MP		0,65	39	4,9	20	3/4"	ı	ı				
EP025R+MP		1,15	69	8,6	25	1"	1400	350				
EP032R+MP	EP032R+MP		108	14,2	32	11/4"			1400	350		
EP040R+MP		2,5	150	21,3	40	1½"			1400	350		
EP050R+MP		4,8	288	32	50	2"					1400	350

¹⁾ Теоретическое значение Kvs для расчета падения давления

								SI	R	G	R
		Время срабатывания	Уг	правлени є	1				THE STATE OF THE S	130	
Плавное	24B~/=	90 c	(0)	0,510 B=	=						
По шине	24B~/=	90 с, настраивается	(0)	0,510 B=	=						
Фланцы	Фланцы		PN16 Тмакс =		l	l .			іе : закрытый		۱
2-ход м			у і [л/с]	nom [л/мин]	Kvs Teop. 1) [M ³ /4ac]	[MM]	DN [дюйм]	ΔР макс [кПа]	ΔРs [кПа]	ΔР макс [кПа]	ΔPs [кПа]
P6065W800	E-MP		8	480	42	65	2 ½"	340	690		
P6080W110	0E-MP		11	660	62	80	3"	340	690		
P6100W200	P6100W2000E-MP		20	1200	109	100	4"	340	690		
P6125W310	0E-MP		31	1860	175	125	5"			340	690
P6150W450	0E-MP		45	2700	224	150	6"			340	690


¹⁾ Теоретическое значение Kvs для расчета падения давления

Управление, рабочий диапазон, сигнал обратной связи, время срабатывания и другие функции могут быть настроены с помощью программы PC-Tool

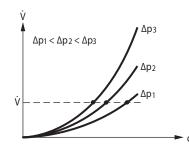
Управление, рабочий диапазон, сигнал обратной связи, время срабатывания и другие функции могут быть настроены с помощью программы PC-Tool

- Номинальное напряжение 24 В~/=
- Управление: плавное регулирование
- Для закрытых систем горячей и холодной воды
- Для плавного регулирования водяного потока в системах обработки воздуха и системах отопления
- Ethernet 10/100 Мбит/с, TCP/IP, итегрированный веб-сервер
- Коммуникация по BACnet IP, BACnet MS/TP, Belimo MP-Bus или обычным путем

Новый клапан BELIMO **Energy Valve** является следующим этапом развития клапана EPIV — клапана с расходом, не зависящим от перепада давления на клапане, и оборудованным электронным датчиком расхода. Как и EPIV, клапан Energy Valve может выполнять четыре функции — измерение расхода, управление с помощью электропривода, динамическую балансировку системы и запорную функцию.

Значительно упрощается корректный подбор регулирующего органа — не требуется расчет перепадов давления для определения Kvs, подбор осуществляется только по расходу тепло- или холодоносителя. С помощью коррекционного диска специального сечения достигается максимальное качество регулирования, а полная герметичность клапана обеспечивает дополнительное энергосбережение.

Расход непрерывно измеряется с помощью встроенного датчика расхода. Настройка системы (расходов) осуществляется максимально просто и быстро. Балансировка системы происходит автоматически (динамическая балансировка).


Новая функция мониторинга энергии. В конструкцию клапана добавлены два датчика, измеряющие температуры на подающем и обратном трубопроводах. Вместе с динамически измеряемым значением расхода, измерение разности температур позволяет осуществлять постоянный мониторинг количества тепловой энергии. Данные значения могут быть просмотрены либо по месту через ноутбук, либо через систему управления, благодаря чему система отопления\охлаждения может быть оптимизирована с целью достижения максимального энергосбережения. Значения расхода Vmax могут задаваться индивидуально для каждого клапана через встроенный WEB-сервер (интерфейс RJ45-Ethernet), через систему управления либо с помощью программатора ZTH EU.

Кроме того, клапаны Energy Valve также позволяют задавать и поддерживать разность температур между подающим и обратным трубопроводами (**ДТ-менеджер**) — данная функция существенно повышает энергоэффективность системы.

Принцип действия

Energy Valve состоит из четырех частей — регулирующего шарового клапана с коррекционным диском, измерительной трубки с расположенным на ней датчиком скорости среды и контроллером, двух температурных датчиков, а также электропривода. На электроприводе устанавливается максимальное значение расхода Vmax в диапазоне от Vnom. При этом установленное значение Vmax автоматически привязывается к верхней границе диапазона управляющего сигнала (как правило, 10 В). Поскольку клапан обладает равнопроцентной характеристикой регулирования, зависимость расхода от величины управляющего сигнала также является равнопроцентной. Кроме того, опционально управляющий сигнал может быть привязан к углу открытия клапана или к количеству тепла (режим «рower control», см. табл. со значениями мощности в кВт для каждого DN на стр. 14).

Стандартный управляющий сигнал электропривода (заводская уставка) — 0(2)...10 В. Привод может также работать в сети ВАСпеt или MP bus. Расход тепло-/холодоносителя, протекающего через измерительную трубку, измеряется с помощью датчика. В вычислительном блоке электропривода измеренное датчиком значение расхода сравнивается с заданным значением. Формируется сигнал рассогласования, на основании которого электропривод перемещает шар регулирующего шарового клапана в необходимое положение. Угол поворота шара с изменяется в зависимости от изменения перепадов давлений в системе, при этом осуществляется динамическая балансировка системы и обеспечивается поддержание необходимого расхода среды. Максимальное значение расхода Vmax может быть задано в диапазоне 30...100% от номинального паспортного значения Vnom для Energy Valve DN 15—50 или 45...100% от Vnom для Energy Valve DN 65—150. При этом наименьшее эффективно контролируемое количество тепло- или холодоносителя составляет 1% от Vnom для Energy Valve DN 15—50 или 2,5% от Vnom для Energy Valve DN 65—150.

Требуемое текущее значение расхода V при изменении перепада давления на клапане Δp обеспечивается изменением угла поворота α .

Таким образом, текущее значение расхода V не зависит от перепадов давления в системе, а изменяется только путем изменения управляющего сигнала, поступающего на привод.

Минимальный перепад давления на клапане Δpmin для корректной работы (стабильного поддержания расхода) зависит от DN клапана и соотношения Vmax / Vnom. Значения Δpmin находятся в диапазоне от 2 кПа и выше (см. формулу на стр. 19)

Тип	DN (мм)	DN (дюймы)	Vnom (л/с)	Vnom (л/мин)	Kvs теор (м³/час)	PN	n(gl)
EV015R+BAC	15	1/2	0,35	21	2,9	16	3,2
EV020R+BAC	20	3/4	0,65	39	4,9	16	3,2
EV025R+BAC	25	1	1,15	69	8,6	16	3,2
EV032R+BAC	32	1 1/4	1,8	108	14,2	16	3,2
EV040R+BAC	40	1 1/2	2,5	150	21,3	16	3,2
EV050R+BAC	50	2	4,8	288	32,0	16	3,2
P6065W800EV-BAC	65	21/2	8	480	40	16	3,2
P6080W1100EV-BAC	80	3	11	660	60	16	3,2
P6100W2000EV-BAC	100	4	20	1200	100	16	3,2
P6125W3100EV-BAC	125	5	31	1860	160	16	3,2
P6150W4500EV-BAC	150	6	45	2700	240	16	3,2

		EVR+BAC	P6WEV-BAC	
Электрические	Номинальное напряжение	24 B ~, 50 Гц / 24 B=	24 B ~, 50 Гц / 24 B=	
параметры	Диапазон номинального напряжения	19,228,8 B ~ / 21,628,8 B=	19,228,8 B ~ / 21,628,8 B=	
	Расчетная мощность	DN 1525 6,5 BA / DN 3250 7,5BA	14 BA	
	Потребляемая мощность: — во время вращения — в состоянии покоя	DN 1525 4 BT / DN 3250 5 BT DN 1525 3,7 BT / DN 3250 3,9BT	10 Вт 8,5 Вт	
	Соединение	Кабель: 1 м , 6 x 0,75 мм²	Кабель: 1 м , 6 х 0,75 мм²	
	Подключение Ethernet	Разъем RJ45	Разъем RJ45	
	Параллельное управление	Возможно (с учетом производитель	ности)	
Функциональные данные	Кривая расхода	Равно-процентная, оптимизирована изменена на линейную)		
	Уровень утечки	А , Герметичен	А , Герметичен	
	Трубное соединение	Внутренняя резьба	Фланцы PN16	
	Положение установки	От вертикального до горизонтально	ого (относительно штока)	
	Тех. обслуживание	Не требуется	Не требуется	
	Ручное управление	Выведение из зацепления механиче может фиксироваться	ского редуктора с помощью кног	
Измерение потока	Принцип измерения	Ультразвуковое измерение расхода среды	Магнитное индуктивное измерение расхода среды	
	Точность измерения	±6% (от 25% до 100% от Vnom)	±6% (от 25% до 100% от Vnom)	
	Примечание к точности измерения	±2% (от 25100% Vnom) при 20°C / 0	% гликоля	
	Минимальный измеряемый поток	1% при Vnom	2,5 % при Vnom	
Измерение температуры	Точность измерения абсолютной температуры	±0,6 °C при 60 °C (РТ1000 Класс В)	±0,6 °С при 60 °С (РТ1000 Класс	
	Точность измерения разницы температуры	±0,23 К при ΔТ = 20 К	±0,23 К при ΔT = 20 К	
	Разрешение	0,05 °C	0,05 °C	
Безопасность	Класс защиты	III (для низких напряжений)	III (для низких напряжений)	
	Степень защиты корпуса	IP54 (при применении защиты RJ45 ן	разъема)	
	Электромагнитная совместимость	СЕ в соответствии с 2004/108/ЕС	СЕ в соответствии с 2004/108/Е	
	Номинальный импульс напряжения	0,8 кВ	0,8 кВ	
	Температура окружающей среды	−3050 °C	−1050 °C	
	Температура хранения	−4080 °C	−2080 °C	
	Влажность окружающей среды	95% отн., не конденсир.	95% отн., не конденсир.	
Материалы	Тело клапана	Латунь	Чугун GG25 с защитным покрытием	
	Измерительный участок	Никелированная латунь	Чугун GGG50 с защитным покрытием	
	Запирающий элемент	Нержавеющая сталь	Нержавеющая сталь	
	Шток	Нержавеющая сталь	Нержавеющая сталь	
	Уплотнение штока	O-образное кольцо EPDM	EPDM Perox	
	Погружная гильза	Латунь	Нержавеющая сталь	
	Фрагмент для установки датчика	Никелированная латунь		

Y [V]

100%

V [м³/ч]

V [м³/ч]

100%

30%

Описание устройства

Управление мощностью (режим «power control»)

С другой стороны, сигнал позиционирования Ү может быть соотнесен с выходной мощностью, требуемой от теплообменника. В зависимости от температуры воды и характеристик воздуха, Energy Valve обеспечивает количество воды, требуемой для достижения желаемой мощности. Максимальная управляемая мощность на теплообменнике в режиме регулирования мощности:

DN	15	20	25	32	40	50	65	80	100	125	150
кВт	30	60	100	160	210	410	700	1000	1700	2700	3800

Характеристики регулирования

Специально сконфигурированные параметры управления в связи с точным датчиком расхода обеспечивают стабильное качество управления. Они, однако, не подходят для быстрых процессов управления, напр. для управления потоком воды бытового назначения

Определения

Vnom — максимально возможное значение расхода при значении скорости теплоносителя от 2 до 2,4 м/с в трубопроводе соответствующего диаметра. Например, для ДУ65 сечение трубопровода составляет ориентировочно 0,065м $^2 \times 3,14$ / 4 = 0,0033 м 2 . При скорости 2,4 м/с, расход составит 480 л/мин или 28.8 м³/час.

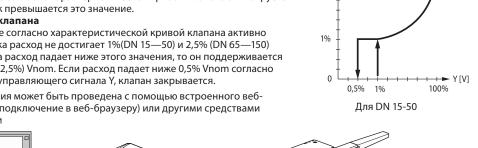
Vmax — максимальное значение расхода в системе. Задается в диапазоне 30...100% от Vnom для Energy Valve DN 15...50 и 45...100% от Vnom для Energy Valve DN 65...150. При этом Vmax соответствует управляющему

Vmin — заводская уставка 0% (не может быть изменена). Производительность Qmax это установленный в режиме управления мощностью максимальный выход тепла на теплообменнике

Компенсация при низком расходе

При низкой скорости потока через открытый клапан, измеритель не может регистрировать его в пределах заданной погрешности. В таком случае расход учитывается электронным способом

Открывание клапана


Клапан остается закрытым до тех пор, пока не подан управляющий сигнал Y, соответствующий 1% (DN 15—50) и 2,5% (DN 65—150) от Vnom. Регулирование согласно характеристической кривой клапана активируется после того, как превышается это значение.

Закрывание клапана

Регулирование согласно характеристической кривой клапана активно до тех пор, пока расход не достигает 1%(DN 15—50) и 2,5% (DN 65—150) от Vnom. Когда расход падает ниже этого значения, то он поддерживается на уровне 1% (2,5%) Vnom. Если расход падает ниже 0,5% Vnom согласно переменного управляющего сигнала Ү, клапан закрывается.

Коммуникация

Параметризация может быть проведена с помощью встроенного вебсервера (RJ45 подключение в веб-браузеру) или другими средствами коммуникации

Соединение между равноправными узлами

http://belimo.local:8080 На ноутбуке должен быть установлен DHCP (англ. Dynamic Host Configuration Protocol протокол динамической настройки узла) — сетевой протокол, позволяющий компьютерам автоматически получать ІР-адрес и другие параметры, необходимые для работы в сети ТСР/ІР. Необходимо убедиться, что активно только одно сетевое подключение

Стандартный ІР адрес: http://192.168.0.10:8080

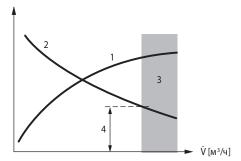

Статический ІР адрес Пароль (только чтение): Имя: «quest» Пароль: «guest»

Инверсия управляющего сигнала

Инверсия может быть осуществлена в случае применения аналогового сигнала в качестве управляющего. Это изменяет стандартный способ управления — в этом случае 0% управляющего сигнала соответствует установке Vmax или Qmax, а в случае максимального управляющего сигнала клапан закрывается

Гидравлическая балансировка

Через интегрированный веб-сервер, максимальный расход (эквивалентно требованию 100%) можно регулировать непосредственно на самом устройстве, просто и надежно, в несколько шагов. Если устройство интегрировано в систему управления, то балансировка может осуществляться непосредственно с помощью системы управления.



Описание устройства (продолжение)

Управление ΔТ

Если обогрев или охлаждение происходят при слишком низкой разнице температур, а, соответственно, и при избыточно высоком расходе это не приводит к увеличению мощности. При этом нагреватели или охладители вынуждены работать с низкой эффективностью. Циркуляционные насосы прокачивают избыточное количество теплоносителя, что приводит к неоправданному увеличению энергопотребления.

С помощью Energy Valve просто определить ситуацию, в которой эксплуатация происходит при слишком низкой разнице температур и, соответственно, неэффективном энергопотреблении. Необходимые настройки параметров теперь могут быть проведены легко и быстро в любое время. Интегрированный менеджер разности температур дает возможность пользователю установить минимальное предельное значение. Energy Valve ограничивает поток автоматически, предотвращая его падение ниже этого значения.

Мощность нагрева или охлаждения 1 Перепад температуры подачи и обратки 2 Зона потерь (насыщение нагрева или охлаждения) 3 Настраиваемая разница температур 4

Комбинация аналоговый — коммуникативный

Интегрированный веб-сервер, BACnet IP, BACnet MS / TP или MP-Bus могут быть использованы для коммуникативной передачи сигнала обратной связи совместно с обычным управлением посредством аналогового сигнала позиционирования

При применении комбинированной схемы управления с аналоговым управляющим сигналом и коммуникативным сигналом обратной связи, необходимо использовать коммуникативный путь исключительно для передачи данных от Energy Valve к системе управления более высокого уровня. В случае, если управляющий сигнал поступит на клапан коммуникативным способом посредством сети — аналоговое управление автоматически деактивируется.

Деактивация может быть отменена путем отключения Energy Valve от электрической сети.

Функция мониторинга мощности и энергии

Устройство оборудовано двумя температурными датчиками. Датчик (T2) устанавливается на клапане, а второй датчик устанавливается на трубопроводе на обратной стороне циркуляции теплоносителя. Оба датчика постоянно подключены к системе. Датчики предназначены для сохранения температуры среды на подаче и выходе потребителя (обогрев или охлаждение). Учитывая, что количество теплоносителя также известно, благодаря встроенному датчику расхода, выход тепловой энергии на потребителе можно рассчитать. Кроме того, энергия нагрева / охлаждения также определяется автоматически с помощью постоянной оценки изменений.

Текущее значение таких переменных как температура, расход, мощность теплообменника могут сохраняться и быть доступными через веб-сервер или по сети (BACnet или MP-Bus).

Сохранение данных

Сохраненные данные (встроенная возможность хранения данных в течение 13-ти месяцев) могут быть использованы для оптимизации системы в целом, и для определения производительности потребителя.

Скачать CSV-файлы можно через веб-браузер.

Ручное управление

Возможно ручное управление при помощи кнопки (зубчатый редуктор выведен из зацепления пока кнопка нажата или заблокирована)

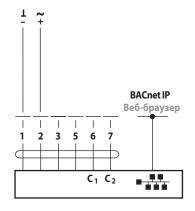
Высокая функциональная надежность

Электропривод защищен от перегрузок, не требует конечных выключателей и останавливается автоматически при достижении конечных положений

Базовое положение

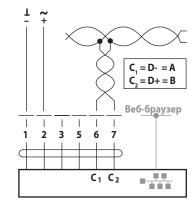
При включении напряжения питания первый раз, например, при вводе в эксплуатацию или после нажатия переключателя «вывод редуктора из зацепления» электропривод перемещается в базовое положение.

Безопасность:


- Клапан разработан для использования в системах отопления, вентиляции и кондиционирования и не применяется в областях, выходящие за рамки указанные в спецификации, особенно для применения на воздушных суднах.
- Устройство может устанавливаться только обученным персоналом. В процессе установки должны быть учтены все рекомендации завода-изготовителя.
- Клапан не содержит частей, которые могут быть переустановлены или отремонтированы потребителем.
- Недопустимо отсоединение регулирующего клапана от измерительной трубы.
- Устройство содержит электрические и электронные компоненты, запрещенные к утилизации вместе с бытовыми отходами. Необходимо соблюдать все действующие правила и инструкции, относящиеся к данной конкретной местности.

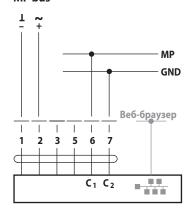
Электромонтаж

Схемы подключения


BACnet IP

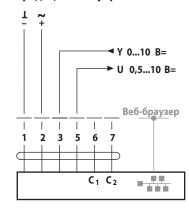
Цвет провода:

- 1 = Черный
- 2 = Красный
- 3 = Белый
- 5 = Оранжевый
- 6 = Розовый
- 7 = Серый

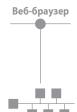

BACnet MS/TP

Цвет провода:

- . 1 = Черный
- 2 = Красный
- . 3 = Белый
- 5 = Оранжевый
- 6 = Розовый
- 7 = Серый


MP bus

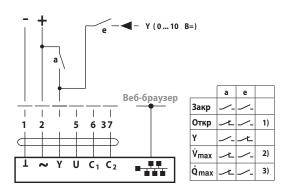
Цвет провода:


- 1 = Черный
- 2 = Красный
- 3 = Белый
- 5 = Оранжевый
- 6 = Розовый
- 7 = Серый

Традиционное управление

Цвет провода:

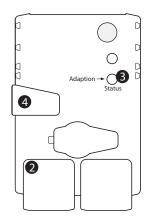
- 1 = Черный
- 2 = Красный
- 3 = Белый
- 5 = Оранжевый
- 6 = Розовый
- 7 = Серый


Подключение ноутбука для параметризации и управлениея через RJ45.

Опционально подключение через RJ45 (прямое подключение ноутбук / подключение через Интранет или Интеренет) для соединния со встроенным веб-сервером

Функционирование

Функционирование устройств со специфическими параметрами


Принудительное управление и ограничение с 24 В= с помощью релейных контактов

- 1) Управление положением
- 2) Управление расходом
- 3) Управление мощностью

Управление и индикация

(2) Кнопка с зеленым светодиодом

Светодиод не горит: Нет питания или неправильное срабатывание Горит зеленым: Рабочий режим

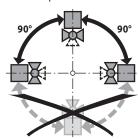
Мигает: Внутренняя связь клапана (клапан/датчик)

(3) Кнопка с желтым светодиодом

Горит желтым: Идет процесс адаптации

Нажать кнопку: Запуск адаптации угла поворота в стандартном режиме

(4) Кнопка ручного управления


Нажать кнопку: Редуктор выведен из зацепления, двигатель не работает, возможно ручное управление

Отпустить кнопку: Редуктор в зацеплении, стандартный режим

Особенности установки

Рекомендуемые положения установки

Клапан может устанавливаться в **горизонтальном** или **вертикальном** положении. Не допускается установка шарового крана в подвешенном положении, например, когда шток направлен вниз

Установка на обратную воду Требования к качеству воды Установка на обратную воду рекомендуется

Краны Belimo являются регулирующими устройствами. Для того, чтобы они выполняли свои регулирующие функции, а также чтобы увеличить их срок эксплуатации, они должны быть свободны от твердых частиц (например кусочки сварочных швов попавших во время монтажных работ).

Рекомендуется установка соответствующих грязевых фильтров

Для корректной работы клапанов Energy Valve DN 65...150, проводимость среды должна быть не менее 20 мкСм/см

Техническое обслуживание

Регулирующие краны и поворотные электроприводы не требуют технического обслуживания

Перед началом проведения любых сервисных работ, убедитесь, что электропривод, установленный на шаровом кране, отключен от электропитания (путем отсоединения питающего кабеля). Все насосы в прилегающих участках должны быть также отключены и соответствующие участки трубопровода заглушены. При необходимости перед проведением работ систему нужно охладить, а давление внутри системы снизить до атмосферного.

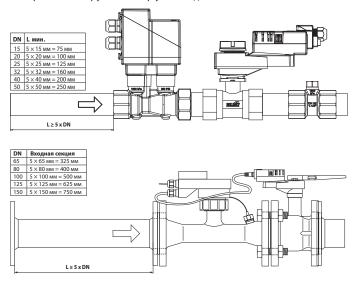

Система не может быть включена обратно до тех пор, пока шаровой кран не будет установлен на место согласно инструкции и соединения не изолированы должным образом.

Направление потока

Необходимо соблюдать направление потока, указанное стрелкой на корпусе крана. В противном случае, расход будет измерен неправильно.

Заземление

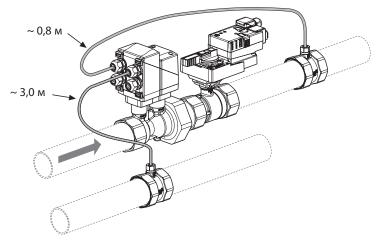
Для обеспечения корректного измерения, измерительная трубка должна быть заземлена (для DN 65...150)



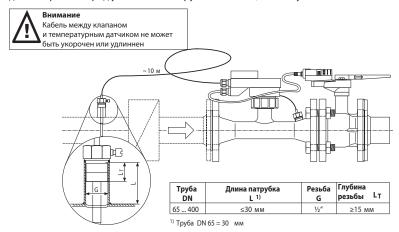
Особенности установки (продолжение)

Входная секци

С целью достижения высокой точности измерения необходимо обеспечить наличие специального участка трубы для снижения скорости потока в противоположной стороне от фланца измерительной трубы. Размер участка должны быть не менее $5 \times DN$.


Установка погружной гильзы и температурного датчика

Устройство оснащено двумя подключенными датчиками


Т1 Датчик установлен прямо на устройстве рядом с клапаном.

Т2 Этот датчик устанавливается с другой стороны потребителя (клапан стоит на обратной воде) или после потребителя (если клапан стоит на подаче).

Два Т-образных монтажных фрагмента для установки температурных датчиков входят в комплект поставки Energy Valve DN 15...50

Для клапанов DN65...150 в комплект поставки входит погружная гильза. Датчик должен быть демонтирован перед установкой погружной гильзы, а затем установлен заново.

Информация по подбору клапана и определению перепада давления

Выбор клапана Клапан определяется исходя из максимального необходимого потока Vmax.

Pacчет Kvs не требуется

 $Vmax = 30 \dots 100\%$ от Vnom для DN 15...50 $Vmax = 45 \dots 100\%$ от Vnom для DN 65...150

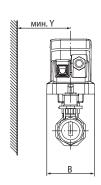
Если данные о гидравлической системе отсутствуют, можно выбрать клапан, соответствующий по диаметру

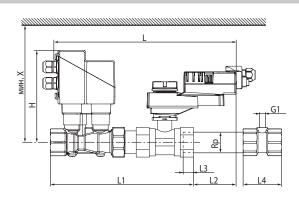
с номинальным диаметром теплообменника

Минимальное дифференциальное давление (падение давления) Минимальное необходимое дифференциальное давление (падение давления на клапане) для достижения желаемого расхода потока Vmax может быть рассчитана с помощью теоретического значения Kvs (см обзор типов) и нижеследующей формулы.

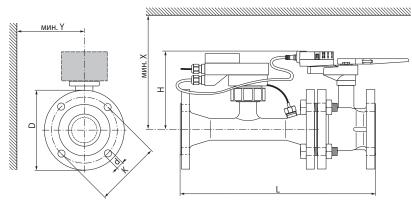
Формула:

$$\Delta p_{\text{MMH}} = 100 \times \left(\frac{\dot{V}_{\text{MaKC}}}{k_{\text{Vs Teop.}}}\right)^2 \qquad \begin{vmatrix} \Delta p_{\text{MMH}} \colon \kappa \Pi A \\ \dot{V}_{\text{MaKC}} \colon \textit{M}^3/\textit{y} \\ k_{\text{Vs Teop.}} \colon \textit{M}^3/\textit{y} \end{vmatrix}$$


Пример: (DN25 требуемый максимальный расход = 50% от Vnom)


EV025R+BAC Kvs теор. = 8,6 M^3/V Vnom = 69 π/M ин

 $50\% \times 69$ л/мин = 34,5 л/мин = 2,07 м³/ч


$$\Delta p_{\text{MИH}} = 100 \times \left(\frac{\dot{V}_{\text{MAKC}}}{k_{\text{VS TeOp.}}}\right)^2 = 100 \times \left(\frac{2,07 \text{ M}^3 \text{ y}}{8,6 \text{ M}^3 \text{ y}}\right)^2 = 6 \text{ κΠa}$$

Размеры / вес

Тип	DN	Rp	L	L1	L2	L3	В	Н	G1	L4	Х	Υ	Вес приблиз.
	(MM)	(дюймы)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)	(MM)	(кг)
EV015R+BAC	15	1/2	278	191	81	13	75	160	G1/4"	53	230	77	2,2
EV020R+BAC	20	3/4	285	203	75	14	75	162	G1/4"	57	232	77	2,5
EV025R+BAC	25	1	296	231	71	16	75	165	G1/4"	65	235	77	2,9
EV032R+BAC	32	1 1/4	324	254	68	19	75	168	G1/4"	71	238	77	3,8
EV040R+BAC	40	1 1/2	334	274	65	19	75	172	G1/4"	71	242	77	4,5
EV050R+BAC	50	2	341	284	69	22	75	177	G1/4"	80	247	77	6.0

Тип	DN	L	Н	D	d	K	Х	Υ	Вес приблиз.
	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(кг)
P6065W800EV-BAC	65	454	200	185	4 × 19	145	220	150	27
P6080W1100EV-BAC	80	499	200	200	8 × 19	160	220	160	33
P6100W2000EV-BAC	100	582	220	229	8 × 19	180	240	175	44
P6125W3100EV-BAC	125	640	240	252	8 × 19	210	260	190	59
P6150W4500EV-BAC	150	767	240	282	8 × 23	240	260	200	75

BELIMO

Energy Valve — Регулирующий клапан с возможностью установки определенного расхода теплоносителя и управления расходом от датчика, с мониторингом мощности и тепловой энергии, 2-ходовой

Комбинация кран	LR		NR		SR							
	(Управление) Раб. диапазон											
Плавное 24 В~/	Плавное 24 В~/= 90 с				(0) 0,510 В= по выбору						14)	
По шине 24 В~/	По шине 24 В~/= 90 с				MP-Bus, BACnet, BACnet MS/TP						14)	
Внутренняя резьба			00 кПа : 120°C	Применение : закрытый контур								
2-ход		V [л/с]	nom [л/мин]	k vs теор. 1) [м³/час]	[MM]	DN [дюйм]	Др ₅ [кПа]	Δр макс [кПа]	Др ₅ [кПа]	Др макс [кПа]	Др ₅ [кПа]	Др макс [кПа]
EV015R+BAC		0,35	21	2,9	15	1/2"	1400	350				
EV020R+BAC	EV020R+BAC			4,9	20	3/4"	ı	ı				
EV025R+BAC	1,15	69	8,6	25	1"	1400	350					
EV032R+BAC	1,8	108	14,2	32	11/4"			1400	350			
EV040R+BAC	2,5	150	21,3	40	1½"			1400	350			
EV050R+BAC	4,8	288	32	50	2"					1400	350	

¹⁾ Теоретическое значение Kvs для расчета падения давления Полностью параметризуется через встроенный веб-сервер

Регулирующий кран BELIMO Energy независимый от давления, с возможностью настройки величины потока и функцией мониторинга									R	GR		
Время срабатывания Управление												
Плавное 2	Плавное 24B~/= 90 c (0)0,510 B=							1.	4)	14)		
По шине 2	По шине 24B~/= 90 с, настраивается MP-Bus, BACnet MS/TP, (0)0,510 B=							14)				
Фланцы	PN16 Tmakc = 120°C					Применение: закрытый контур						
2-ход	*(M)		V ı [л/с]	nom [л/мин]	Kvs теор. 1) [м³/час]	[MM]	DN [дюйм]	∆Р макс [кПа]	ΔPs [κΠa]	∆Р макс [кПа]	∆Ps [кПа]	
P6065W800EV-	P6065W800EV-BAC				42	65	2 1/2"	340	690			
P6080W1100EV-BAC			11	660	62	80	3"	340	690			
P6100W2000EV	20	1200	109	100	4"			340	690			
P6125W3100E	31	1860	175	125	5"			340	690			
P6150W4500EV	45	2700	224	150	6"			340	690			

¹⁾ Теоретическое значение Kvs для расчета падения давления Полностью параметризуется через встроенный веб-сервер