

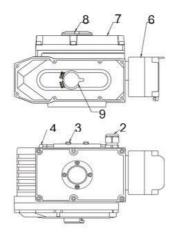
ТЕХНИЧЕСКИЙ ПАСПОРТ

Электропривод четвертьоборотный DN.ru QT-N-xEM-x1-x-У1 с датчиком обратной связи и входным управляющим сигналом 4-20мA/0-10B HARK

1. ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

- 1.1. Наименование изделия: Электропривод четвертьоборотный DN.ru QT-N-xEM-x1-x-У1 с датчиком обратной связи и входным управляющим сигналом 4-20мA/0-10B HARK.
- 1.2. Назначение: Электроприводы четвертьоборотные управляемые DN.ru предназначены для дистанционного и местного управления вращением запорного органа на 90° таких типов как кран шаровой и т.п.
- 1.3. Применение: широко применяются в различных отраслях народного хозяйства: в газовой, нефтяной, металлургической, пищевой промышленности, в жилищно-коммунальном хозяйстве и т.д.
- 1.4. Принцип работы: электроприводы устанавливаются непосредственно на трубопроводной арматуре. Установочные размеры соответствуют международному стандарту ISO 5211. Четыре микровыключателя используются для ограничения хода выходного вала по конечным положениям рабочего органа арматуры. Электроприводы рассчитаны для работы в номинально-кратковременном режиме S2 10 минут.

1.5. Расшифровка обозначения:



2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

Таблица 1. Основные параметры

таолица т. основные параметры	
Напряжение питания	220 VAC, 24 VDC
Тип электропривода	четвертьоборотный
Управление	4-20 mA/0-10 B
Тип двигателя	асинхронный двигатель с короткозамкнутым ротором
Концевые выключатели	2-Открыто/Закрыто, SPDT, 250B 10A
Вспомогательные концевые выключатели	2-Открыто/Закрыто, SPDT, 250B 10A
Угол поворота, °	90 ± 5
Встроенная тепловая защита	включение при +120±5°C, выключение при +97±5°C
Визуальный индикатор текущего положения	есть
Температура окружающей среды, °С	от −20 до +70
Ручной дублёр	шестигранник (в комплекте)
Автоблокировка положения электропривода	автоблокировка червячного механизма и червячной передачи
Механический ограничитель	два внешних регулируемых ограничителя
Кабельные вводы	2xM18
Корпус	алюминиевый сплав с эпоксидным покрытием
Смазка	молибденовая
Максимальная влажность окружающей среды, %	90
Класс защиты корпуса	IP67
Средний ресурс, циклов открытия/закрытия	30 000

3. ОСНОВНЫЕ ДЕТАЛИ

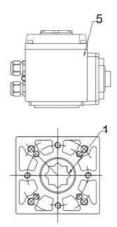


Рисунок 1 - Деталировка

Таблица 2. Деталировка

№ п/п	Наименование
1	Выходной вал
2	Кабельный замок
3	Механический ограничитель
4	Ручной гаечный ключ
5	Корпус
6	Модульный бокс
7	Крышка
8	Смотровое окно
9	Защита от пыли

4. ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

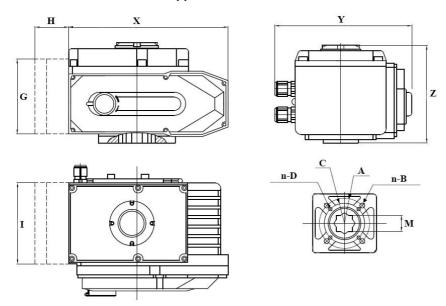


Рисунок 2 - Размеры

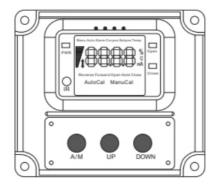
Таблица 3.1. Размерные характеристики

	Х .	Υ	Z	Н	G	I
Модель	ММ				L	
QT-N-005EM-x1-x-Y1-HARK	161	120,5	122	74	114	104
QT-N-008EM-x1-x-Y1-HARK	161	120,5	122	74	114	104
QT-N-010EM-x1-x-Y1-HARK	188	165	127	40	114	100
QT-N-015EM-x1-x-Y1-HARK	188	165	127	40	114	100
QT-N-030EM-x1-x-Y1-HARK	241.8	178	157.5	74	114	104
QT-N-040EM-x1-x-Y1-HARK	241.8	178	157.5	74	114	104
QT-N-060EM-x1-x-Y1-HARK	241.8	178	157.5	74	114	104

Таблица 3.2. Размерные характеристики

Молопи	С	Α	М	n-D	n-B
Модель	ММ			шт-резьба	
QT-N-005EM-x1-x-Y1-HARK	50	70	14	4-M6	4-M8
QT-N-008EM-x1-x-Y1-HARK	50	70	14	4-M6	4-M8
QT-N-010EM-x1-x-Y1-HARK	50	70	17	4-M6	4-M8
QT-N-015EM-x1-x-Y1-HARK	50	70	17	4-M6	4-M8
QT-N-030EM-x1-x-Y1-HARK	50	70	22	8-M10	4-M12
QT-N-040EM-x1-x-Y1-HARK	70	102	22	8-M10	4-M12
QT-N-060EM-x1-x-Y1-HARK	70	102	22	8-M10	4-M12

5. ЭЛЕКТРОТЕХНИЧЕСКИЕ ПАРАМЕТРЫ


Таблица 4. Присоединительные размеры, крутящие моменты, и вес

Модель	Крутящий момент, Нм	Квадрат приводного вала, мм	ISO 5211	Вес, кг
QT-N-005EM-x1-x-Y1-HARK	50	14x14	F05/F07	3,6
QT-N-008EM-x1-x-Y1-HARK	80	14x14	F05/F07	3,6
QT-N-010EM-x1-x-Y1-HARK	100	17x17	F05/F07	4,6
QT-N-015EM-x1-x-Y1-HARK	150	17x17	F05/F07	4,6
QT-N-030EM-x1-x-Y1-HARK	300	22x22	F07/F10	8,9
QT-N-040EM-x1-x-Y1-HARK	400	22x22	F07/F10	8,9
QT-N-060EM-x1-x-Y1-HARK	600	22x22	F07/F10	9,3

Таблица 5. Напряжение, ток, время цикла, управляющий сигнал и мощность

Модель	Номинальный ток, А	Время цикла (поворот на 90°), сек	Напряжение питания, В	Управляющий сигнал	Мощность, Вт
QT-N-005EM-A1-220VAC-Y1-HARK	0,24	30	220AC	4-20 мА	10
QT-N-005EM-B1-220VAC-У1-HARK	0,24	30	220AC	0-10 B	10
QT-N-005EM-A1-24VDC-Y1-HARK	3	13	24DC	4-20 мА	10
QT-N-008EM-A1-220VAC-Y1-HARK	0,25	30	220AC	4-20 мА	12
QT-N-010EM-A1-24VDC-Y1-HARK	4	13	24DC	4-20 мА	20
QT-N-010EM-B1-220VAC-Y1-HARK	0,32	30	220AC	0-10 B	20
QT-N-010EM-A1-220VAC-Y1-HARK	0,32	30	220AC	4-20 мА	20
QT-N-015EM-A1-220VAC-Y1-HARK	0,35	30	220AC	4-20 мА	25
QT-N-015EM-B1-220VAC-Y1-HARK	0,35	30	220AC	0-10 B	25
QT-N-030EM-A1-220VAC-Y1-HARK	0,55	30	220AC	4-20 мА	45
QT-N-030EM-B1-220VAC-Y1-HARK	0,55	30	220AC	0-10 B	45
QT-N-040EM-B1-220VAC-Y1-HARK	0,55	30	220AC	0-10 B	45
QT-N-040EM-A1-220VAC-Y1-HARK	0,55	30	220AC	4-20 мА	45
QT-N-060EM-A1-220VAC-Y1-HARK	0,9	30	220AC	4-20 мА	90

6. МОДУЛЬ УПРАВЛЕНИЯ

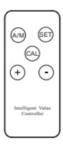


Рисунок 3 - Модуль управления

6.1. Основные характеристики

Многофункциональный ЖК-дисплей: пользователь может просматривать основные параметры оборудования и контролировать рабочее состояние, а также легко узнать о неисправностях.

Оснащён инфракрасным пультом дистанционного управления, который обеспечивает бесконтактное управление на месте и настройку параметров, а также получение информации о свободном доступе к обслуживанию и аварийной сигнализации.

Функция мониторинга привода в реальном времени: после обнаружения неисправности контроллер остановит двигатель. На дисплее отобразится информация об ошибке.

В модуле управления используется передовой алгоритм управления PID. Улучшенный алгоритм управления PID автоматически регулирует параметры, в соответствии с изменением крутящего момента и нагрузки. На основе параметров PID рассчитывается наилучшее время открытия и закрытия.

Имеет функцию защиты от превышения крутящего момента: при возникновении неисправности система отключит привод.

Таблица 6. Инструкция по работе модуля

Кнопка	Действие при нажатии
A/M	дистанционный/локальный переключатель
UP	открывает привод; отображает фактическое положение привода
DOWN	закрывает привод; с пульта - показывает температуру привода
SET (Настройка)	входит в интерфейс настройки параметров
CAL (Калибровка)	длительное нажатие в течение 3 секунд— вход в режим автоматической калибровки

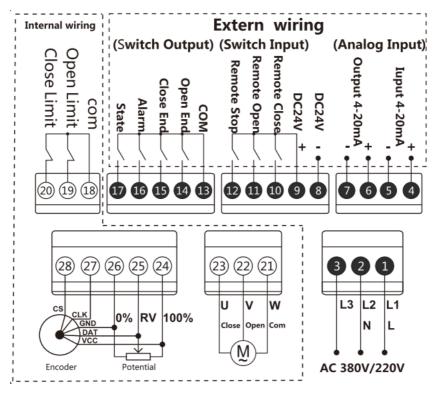


Рисунок 4 – Схема подключение модуля управления к электроприводу

6.2. Настройка нулевого и полного положения

Ручная настройка.

Ручную калибровку можно выполнить в двух режимах:

в режиме ручного или автоматического измерения и управления нажмите клавиши «A/M» и «DOWN» на 3 секунды одновременно, чтобы войти в настройку параметра нулевого положения, затем можно установить параметр нулевого положения «uL». После завершения настройки нажмите клавишу «Swtich», чтобы сохранить и выйти. Или нажмите клавиши «A/M» и «UP» на 3 секунды одновременно, чтобы войти в настройку параметра полного положения «uH», после завершения настройки нажмите клавишу «A/M», чтобы сохранить и выйти.

Установив параметр "Р" на 3,1, нажмите клавишу «А/М», чтобы войти в настройку параметра нулевого положения «uL». После установки нулевого положения нажмите клавишу «А/М», на дисплее отобразится «uH=xxx», чтобы обозначить полное положение. После завершения настройки снова нажмите клавишу «А/М», затем установите Р на 5,0, нажмите клавишу «А/М», чтобы сохранить и выйти, вернувшись в режим автоматического измерения и управления.

Способ второй: метод автоматической калибровки

В ручном или автоматическом режиме измерения и управления одновременно нажмите клавиши «DOWN» и «UP» на 3 секунды, чтобы запустить программу автоматической калибровки. Позиционер автоматически откалибрует нулевое и полное положение, калибровка не требует ручных операций. После завершения калибровки позиционер вернется в исходное состояние.

6.3. Калибровка входного тока

Измените параметр "Р" на 11.1, затем нажмите клавишу «А/М», чтобы установить параметр «iL».

Калибровка входного тока нулевой позиции: отобразите «iL», введите электрический ток нулевой позиции 4 мА. После того, как отображаемое значение стабилизируется, нажмите «A/M» для подтверждения и введите параметр «iH».

Калибровка входного тока полного положения: отобразите «iH», введите электрический ток полного положения 20 мА. После того, как отображаемое значение стабилизируется, нажмите «A/M» для подтверждения, установите "P" на 5,0, нажмите «A/M» еще раз, чтобы сохранить и выйти, вернитесь в режим автоматического измерения и управления.

Примечания: обычно этот шаг выполнять не нужно, при необходимости действуйте под руководством инженера. Эта настройка доступна только для типа Adjust. При калибровке входного тока необходим источник сигнала с выходным током 4~20 мА.

6.4. Калибровка выходного тока

Измените параметр «Р» на 1.1, затем нажмите клавишу «А/М», чтобы войти в настройку параметра «OL»;

Калибровка выходного тока нулевого положения: отобразите параметр «oL», нажмите клавишу "UP" или "DOWN", чтобы изменить значение «oL», измените выходной ток на 4 мA, нажмите «A/M» для подтверждения, продолжите настройку параметра «oH».

Калибровка выходного тока полного положения: отобразите параметр "оН", нажмите клавишу "UP" или "DOWN", чтобы изменить значение "оН", чтобы изменить выходной ток на 20 мА, нажмите «А/М» для подтверждения. Затем перейдите к настройке параметра внутренней температуры сигнализации "t".

Настройка оповещения о температуре двигателя: введите параметр «t» (порог срабатывания внутреннего температурного сигнала): нажмите «DOWN» или «UP», чтобы изменить значение «t», обычно устанавливается в диапазоне от 70 до 80 градусов, нажмите клавишу «A/M» для подтверждения, затем установите "P" на 5,0, нажмите «A/M» еще раз, чтобы сохранить и выйти, вернувшись в режим автоматического измерения и управления.

Примечания: обычно нет необходимости выполнять этот шаг, если необходимо, пожалуйста, действуйте под руководством инженера. При калибровке выходного тока необходим амперметр с диапазоном входного тока 4~20 мА.

6.5. Метод выхода

Сохранить и выйти.

После калибровки необходимо изменить «Р» на 5,0, нажав «UP» или «DOWN», затем нажать «А/М» для подтверждения, позиционер автоматически сохранит набор параметров и выйдет из состояния настройки.

Выйти без сохранения.

После калибровки необходимо изменить "Р" на 4.9, нажав «UP» или «DOWN», затем нажмите «A/M» для подтверждения, позиционер автоматически выйдет без сохранения набора параметров. Или во время процесса настройки выше время ожидания нажатия клавиши не должно превышать 30 секунд, в противном случае позиционер автоматически выйдет без сохранения набора параметров.

6.7. Блок-схема выполнения настроек модуля управления

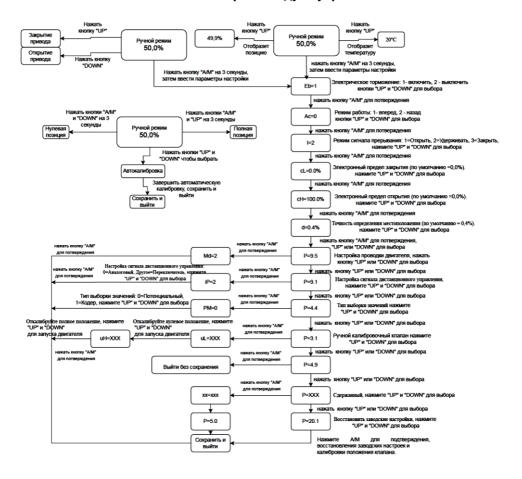


Рисунок 5 - Настройка

6.8. Коды ошибок модуля управления

Таблица 7. Коды ошибок

Код ошибки	Описание	Решение
Er0	Отсутствие фазы	проверить фазу на обрыв
Er1	Ошибка хранилища параметров	выполните повторную калибровку
Er2	Сигнализация о слишком высокой внутренней температуры	примите меры по охлаждению
Er3	Двигатель прямого действия заблокирован	проверьте механическую часть клапана и привода
Er4	Двигатель обратного действия заблокирован	проверьте механическую часть клапана и привода
Er6	Недостаточный входной ток	< значение "iL", необходимо увеличить сигнал до 4 мА
Er7	Большой входной ток	> значение "iH" уменьшите до 20мА
Er8	Порог меньше нижнего предела	проверьте значение "cL" до 0,00%
Er9	Порог больше верхнего предела	проверьте значение "cL" до 100,00%
Er10	Нулевой полный ход слишком мал	разница в рабочем графике слишком мала, клапан нулевой перекалибровки снова полон
Er11	Внешняя температура, обнаружение перегрева	примите меры по охлаждению
Er12	Потенциометр не подключен или перегружен	проверьте проводку или отрегулируйте потенциометр
Er13	Открой момент	с направлением крутящего момента проверьте механические части клапана или привода
Er14	Зазор крутящего момента	нулевое направление крутящего момента, проверьте механические части клапана или привода
Er15	Неверное подключение трехфазного двигателя	проверти подключение проводов

6.9. Параметры: значения и настройки модуля управления

Таблица 8.1. Значение настроек

Nº	Наименование	Параметр	Значение по умолчанию	Описание
1	Войдите в меню настройки			войдите в меню настройки параметров, нажмите и удерживайте клавишу А/М более 3 секунд, затем введите параметр Eb
2	Электрический тормоз	Eb	Eb=1	Eb=1 разрешено, нажмите UP или DOWN для выбора, нажмите A/M для подтверждения, продолжите установку параметра Ac. Eb=0 запретить, нажмите UP или DOWN для выбора, нажмите A/N для подтверждения, продолжите установку параметра Ac
3	Рабочий режим	Ac	Ac=0	Ас=0 действие вперед: входной ток изменяется с 4 мА до 20 мА, что позволяет клапану открыться шире, нажмите клавишу UP или DOWN для выбора, нажмите А/М для подтверждения, продолжите настройку параметра I, загорится светодиод «Вперед» Ас=1 обратное действие: входной ток изменяется с 4 мА до 20 мА, отображая более широкое открытие клапана, нажмите клавишу UP или DOWN для выбора, нажмите А/М для подтверждения, продолжите настройку параметра I, загорится светодиод «Реверс»
4	Режим сигнала прерывания	I	I=2	I=2 никаких действий (клапан остается открытым), нажмите UP или DOWN для выбора, нажмите клавишу A/M для подтверждения, продолжите настройку параметра CL, загорится светодиод «Кеер» I=3 закрытие (до полного закрытия клапана), нажмите UP или DOWN для выбора, нажмите клавишу A/M для подтверждения, продолжите настройку параметра CL, загорится светодиод «Close»
5	Нижний предел закрытия клапана	cL	cL=0	ограничьте минимальный нижний предел закрытия клапана (в процентах), нажмите UP или DOWN для выбора, нажмите A/M для подтверждения, введите параметр cH
6	Нижний предел закрытия клапана	сН	cH=100	ограничьте максимально низкий предел закрытия клапана (в процентах), нажмите UP или DOWN для выбора, нажмите A/M для подтверждения, введите параметр cH
7	Точность определения местоположен ия	d	d=0.4	d=0.1~3.0 нажмите UP или DOWN чтобы изменить значение (в процентах), перейдите к параметру P
8	Точность определения местоположен ия	P=5.0		нажмите клавишу А/М для подтверждения, сохранения параметра настройки, выхода из состояния настройки и возврата в состояние управления
9	Выйти без сохранения	P=4.9		нажмите клавишу А/М для подтверждения, не сохраняя параметр настройки, выйдите из состояния настройки, вернитесь в состояние управления
10	Восстановить заводские настройки	P=20.1		нажмите клавишу А/М для подтверждения, восстановления заводских настроек по умолчанию и автоматической калибровки положения клапана

Таблица 8.2. Значение настроек

	блица 8.2. Зна Г		Значение по	
Νō	Наименование	Параметр	умолчанию	Описание
11	Калибровка входного тока	P=11.1	iL=XXX	нажмите клавишу UP или DOWN, чтобы установить P на 1.1, нажмите A/M для подтверждения, перейдите к параметру iL. (Примечание: сначала откалибруйте минимальный входной ток, затем откалибруйте максимальный входной ток) откалибруйте минимальный входной ток iL, отрегулируйте внешний входной ток до 4 мA, после того, как дисплей на светодиоде стабилизируется, нажмите клавишу A/M для подтверждения, перейдите к параметру iH
			iL=XXX	откалибруйте максимальный входной ток iH, отрегулируйте внешний входной ток до 20 мА, после того, как показания светодиода станут стабильными, нажмите клавишу А/М для подтверждения, перейдите к параметру P=5.0
12	Калибровка	P=1.1	oL=XXX	нажимайте кнопки UP или DOWN, пока P не станет равным 1.1, нажмите кнопку A/M для подтверждения и перейдите к параметру oL. (Примечание: сначала откалибруйте минимальный входной ток, затем максимальный входной ток) откалибруйте минимальный выходной ток oL, нажмите клавишу UP или DOWN, чтобы изменить значение, после того как внешний амперметр стабильно покажет 4 мА, нажмите клавишу A/M для подтверждения, продолжите настройку параметра oH.
12	выходного тока		oH=XXX	откалибруйте минимальный выходной ток оL, нажмите клавишу UP или DOWN, чтобы изменить значение, после того как внешний амперметр стабильно покажет 20 мА, нажмите клавишу А/М для подтверждения, продолжите настройку параметра t.
			oC=XXX	параметр предупреждения о внутренней температуре t. Нажмите клавишу UP или DOWN, чтобы изменить значение для настройки температуры предупреждения, перейдите к параметру P=5.0.
13	Ручная калибровка	P=3.1	uL=XXX	нажимайте клавишу UP или DOWN, пока P не станет равным 3.1, нажмите А/М для подтверждения, продолжите настройку параметра uL. (Примечание: необходимо выполнить калибровку сначала малого, затем большого значения)
	клапана		uH=XXX	калибровка полного положения uH. Сначала нажмите клавишу UP или DOWN для ожидаемого полного положения, нажмите клавишу A/M для подтверждения, верните P=5.0
14	Va	P=4.4	PM=0	РМ=0: выберите потенциометр, нажимайте UP или DOWN, пока P не станет равным 4.4, нажмите A/M для подтверждения, введите настройку PM, чтобы изменить PM=0 РМ=1: выберите кодировщик, нажимайте UP или DOWN, пока P не станет равным 4.4, нажмите A/M для подтверждения, введите настройку PM, чтобы изменить PM=1
15	Настройка проводки двигателя	P=9.5	Md=2	Md=1: стандартный тип регулировки двигателя, нажимайте UP или DOWN, пока P=9,5, нажмите A/M для подтверждения, введите настройку Md, чтобы изменить Md=1 Md=2: двигатель пассивного контактного типа, нажимайте UP или DOWN, пока P=9,5, нажмите A/M для подтверждения, введите настройку Md, чтобы изменить Md=2
16	Выбор метода местного управления	P=9.3	MM=2	ММ=1: локальное управление наведением, нажимайте клавишу UP или DOWN до тех пор, пока P=9.3, нажмите А/М для подтверждения, войдите в настройку параметров ММ, измените ММ на 1 ММ=2: локальное управление, нажимайте клавишу UP или DOWN до тех пор, пока P=9.3, нажмите А/М для подтверждения, войдите в настройку параметров ММ, измените ММ на 2

Таблица 8.3. Значение настроек

Tau	таблица 8.3. Значение настроек						
Nº	Наименование	Параметр	Значение по умолчанию	Описание			
17	Настройка сигнала дистанционног о управления	P=9.1	іР=0	iP=0: тип настройки, управление двигателем через аналоговый сигнал 4~20 мА, другие сигналы управления могут быть настроены iP=1: дистанционное управление наведением: дистанционное открытие сигнала закрытия, клапан открыт, сигнал выключен, клапан остановлен. Закрытия клапана аналогично, дистанционное удержание сигнала недействительно iP=2: дистанционное удержание сигнала закрытия, клапан останавливается, удержание сигнала открытия, открытие сигнала закрытия длится Т секунд (Т=3), клапан остается открытым, пока не поступит сигнал удержания закрытия. Закрытие клапана аналогично iP=3: дистанционное удержание в закрытом положении: дистанционное удержание сигнала в открытом положении, клапан останавливается, удержание сигнала в закрытом положении, открытие сигнала закрывается в течение Т секунд (Т=3), клапан остается открытым, пока не поступит сигнал удержания в открытом положении. Закрытие клапана аналогично iP=4: сигнал включения включен и сигнал выключения выключен: действителен только сигнал дистанционного открытия закрывает клапан, удерживая его закрытым, сигнал дистанционного открытия включения выключения дистанционного открытия, сигнал выключения дистанционного открытым, сигнал дистанционного открытия, сигнал дистанционного открытым, сигнал дистанционного открытым сигнал выстанционного открытым сигнал выстанционного открытым сигнал выстанционного открытым			
18	Слежение за временем	P=6.2	T=3	параметр времени «Т» изменяется, когда iP=2 или 3, сигнал открытия закрывается на Т секунд, может продолжать работать, Т может изменяться в диапазоне от 0 до 20 секунд			

7. СХЕМЫ ПОДКЛЮЧЕНИЯ ЭЛЕКТРОПРИВОДА

7.1. Электрическая схема подключения электропривода на 220VAC

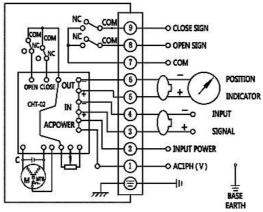


Рисунок 6 - Электросхема подключения на 220 В

7.2. Электрическая схема подключения электропривода на 24VDC

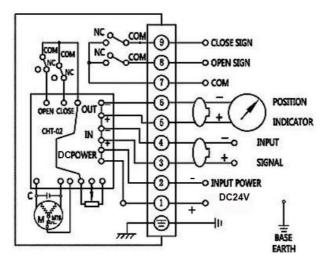
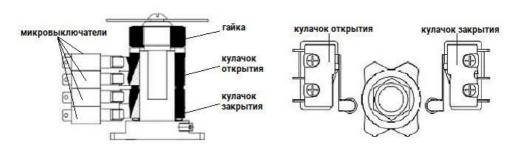



Рисунок 7 - Электросхема подключения на 24 В постоянное

8. УКАЗАНИЯ ПО НАСТРОЙКЕ

8.1. Настройка концевых выключателей

- 8.1.1. Отключить питание от электропривода.
- 8.1.2. Используя ручной дублер, перевести электропривод в положение, соответствующее полностью закрытому затвору.
- 8.1.3. Ослабить гайку, фиксирующую кулачки на рабочем валу электропривода.

- 8.1.4. Вращая кулачки (желтый открытие, красный закрытие), установить их таким образом, чтобы кулачок зажимал нужный микровыключатель в требуемом положении.
- 8.1.5. Перевести электропривод в положение, соответствующее полностью открытому затвору, используя ручной дублер.
- 8.1.6. Повторить операцию для установки полностью открытой позиции.
- 8.1.7. Зафиксировать кулачки прижимной гайкой.

8.2. Настройка механических упоров

- 8.2.1. Ослабить гайку механического упора и перевести электропривод в полностью закрытое положение, используя ручной дублер.
- 8.2.2. Повернуть гайки механических стопоров до касания веерообразной шестерни, а затем завернуть на два оборота.

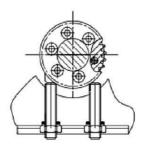


Рисунок 8 - Механические упоры

8.2.3. Повторить операцию для положения «открыто».

8.3. Настройка потенциометра

8.3.1. Потенциометр, как выводящий сигнал обратной связи, с 3 клеммами, подключите: к подвижному рычагу потенциометра (2); к клемме, сопротивление которой понижается между подвижными рычагами при движении привода в открытое положение (1); к клемме, сопротивление которой понижается между подвижными рычагами при движении привода в сторону закрытого положения (3).

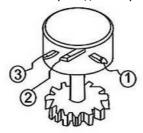


Рисунок 9 - Потенциометр

8.3.2. Поверните вручную клапан в положение полного открытия до перемещения концевого выключателя, измеряя сопротивление с помощью мультиметра, установите сопротивление между (2) и (1) 35 Ом ~ 60 Ом. Если значение неверно, отрегулируйте его, поворачивая приводную шестерню потенциометра.

9. УКАЗАНИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ

- 9.1. При использовании электропривода в качестве исполнительного управляющего элемента на арматуре транспортирующей загрязненную и/или абразивную среду с твердыми включениями, во избежание выхода электропривода и/или арматуры из строя, требуется исключить вероятность заклинивания запорного органа арматуры из-за попадания твердых частиц/тел между запорным органом и корпусом и/или уплотнением арматуры либо предусмотреть электрическую защиту и отключение по току потребления электропривода.
- 9.2. Перед запуском электропривода необходимо произвести несколько циклов пробного открытия-закрытия задвижки с помощью ручного дублера электропривода. Если при открытии от ручного дублера запорная арматура открывается-закрывается нормально, то следует подключить ее к сетям питания и управления и произвести несколько циклов пробного открытия-закрытия с помощью электропривода.
- 9.3. К монтажу электропривода допускается персонал, изучивший устройство электропривода, правила техники безопасности, требования настоящего паспорта.
- 9.4. При монтаже электропривода следует предусмотреть пространство для ремонта кабелей, ручных работ.
- 9.5. Перед началом работы электропривода необходимо убедиться, что ручной режим отключен (гнездо ручного дублера полностью отжато).
- 9.6. Монтаж электропривода производится непосредственно на запорную арматуру. При монтаже следует обратить внимание на правильное совмещение посадочного фланца электропривода и ответного посадочного фланца на исполнительном органе. Не допускается посадка «внатяг», люфты, зазоры при сопряжении электропривода и запорного органа. Это приводит к увеличению нагрузки на узлы и детали электропривода, ускоренному износу и быстрому выходу из строя электропривода.
- 9.7. Привод должен иметь собственные опоры в случае его установки на арматуру в положении, отличном от горизонтального. Корпус электропривода должен быть заземлен.
- 9.8. Перед запуском привода следует произвести несколько циклов пробного открытия-закрытия арматуры с помощью ручного дублера привода. Если при открытии от ручного дублера запорная арматура открывается-закрывается нормально, то следует подключить ее к сетям питания и управления и произвести несколько циклов пробного открытия-закрытия с помощью электропривода.

ВНИМАНИЕ! Использование ручного дублера при поданном напряжении питания строго запрещено. Нарушение данного правила может привести к травме персонала, а также поломке деталей.

9.9. Обслуживание и эксплуатация электропривода должны вестись в соответствии с установленными «Правилами технической эксплуатации электроустановок потребителей».

10. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Таблица 9. Список неисправностей

Неисправность	Возможная причина	Меры по устранению	
	Отсутствует питание	Проверьте подключение к источнику питания	
	Поврежденный провод, слабое крепление клеммы	Замените провод, затяните крепление клеммы	
	Напряжение питания не соответствует требуемому напряжению привода	Приведите подаваемое напряжение в соответствии с характеристиками привода	
Привод не работает	Сработала защита от перегрева	Устраните причины, вследствие которых сработала защита	
	Некорректная работа концевого выключателя	Замените концевой выключатель	
	Разрушение пускового конденсатора	Замените пусковой конденсатор и проверьте рабочую температуру привода	
Привод не	Некорректное напряжение питания	Проверьте и приведите подаваемое напряжение в соответствии с характеристиками привода	
останавливается	Ослаблено крепление потенциометра	Проверьте и затяните винты потенциометра	

11. УСЛОВИЯ ТРАНСПОРТИРОВКИ И ХРАНЕНИЯ

- 11.1. Транспортировка электроприводов может производиться любым видом транспорта способом, исключающим повреждения электропривода, согласно условиям 5 по ГОСТ 15150.
- 11.2. Хранение электроприводов осуществляется в упаковке завода-изготовителя в складских помещениях, обеспечивающих сохранность и исправность электроприводов, согласно условиям 3 по ГОСТ 15150.

12. УТИЛИЗАЦИЯ

- 12.1. Утилизация изделия (переплавка, захоронение, перепродажа) осуществляется в соответствии с требованиями:
- Федерального закона от 24.06.1998 № 89-ФЗ (ред. от 04.08.2023) «Об отходах производства и потребления»,
- Федерального закона от 04.05.1999 № 96-ФЗ (ред. от 13.06.2023) «Об охране атмосферного воздуха»,
- а также иных действующих нормативных правовых актов Российской Федерации и региональных нормативов, принятых во исполнение указанных законов.