
Рисунок И.1 - Форма и размеры проводника, подготовленного для присоединения к АВДТ

для заметок	ДЛЯ ЗАМЕТОК
	_
	15

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ТЖИК.641249.006 РЭ/3

ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ, УПРАВЛЯЕМЫЕ ДИФФЕРЕНЦИАЛЬНЫМ ТОКОМ, БЫТОВОГО И АНАЛОГИЧНОГО НАЗНАЧЕНИЯ СО ВСТРОЕННОЙ ЗАЩИТОЙ ОТ СВЕРХТОКА ТИПА

OptiDin D63

OP	ΤI	М	ΙA
	0	KE	ΑZ

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

АВДТ соответствует требованиям ГОСТ IEC 61009-1-2020,ГОСТ 9219-88, TP TC 001/2011, TP TC 004/2011, TP TC 020/2011, TP EAGC 037/2016, ТУ3422-046-05758109-2008, ТУ3422-046-05758109-2008 Д и признан годным к эксплуатации.

Дата изготовления маркируется на упаковке АВДТ

Технический контроль произведен_

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1 Настоящее руководство по эксплуатации предназначено для ознакомления с техническими данными, устройством, правилами эксплуатации, условиями хранения выключателей автоматических, управляемых дифференциальным током, бытового и аналогичного назначения со встроенной защитой от сверхтока, функционально зависящих от напряжения сети (не размыкающиеся автоматически в случае исчезновения напряжения), бытового и аналогичного назначения типа ОрtiDin D63 (далее АВДТ).
- 1.2 АВДТ предназначены для применения в однофазных электрических целях переменного тока частоты 50/60 Гц с глухозаземлённой нейтралью номинальным напряжением не выше 230 В и номинальными токами до 40 А, для защиты людей от поражения электрическим током при не-исправностях электрооборудования или при непреднамеренном контакте с открытыми проводящими частями электроустановок, а также для предотвращения возгораний и пожаров, возникающих вследствие протекания токов утечки и замыканий на землю, для защиты от токов перегрузки и короткого замыкания и оперативных включений и отключений указанных цепей.

Виды климатических исполнений АВДТ УХЛ4, УЗ и ОМ4 по ГОСТ 15150-69. АВДТ с индексом RR предназначены для работы на подвижном составе рельсового транспорта и троллейбусах. АВДТ применимы на объектах железных дорог и железнодорожном подвижном составе. АВДТ соответствуют требованиям ГОСТ 9219-88.

АВДТ климатического исполнения УХЛ4, УЗ с индексом РЕГ изготавливаются под наблюдением Федеральное автономное учреждение «Российское Классификационное Общество» (РКО).

Изделия, изготовленные под наблюдением РКО должны соответствовать требованию «Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов».

АВДТ климатического исполнения ОМ4 с индексом РЕГ изготавливаются под техническим наблюдением Федеральное автономное учреждение «Российский морской регистр судоходства» (РМРС).

Изделия, изготовленные под техническим наблюдением РМРС, должны соответствовать требованиям следующих нормативных документов: Части XI Правил классификации и постройки морских судов.

Части IV Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов.

- 1.3 Структура условного обозначения АВДТ приведена в приложении А. 1.4 Время-токовые характеристики отключения АВДТ приведены в при-
- ложении Б. 1.5 Габаритные, установочные и присоединительные размеры АВДТ
- 1.5 Табаритные, установочные и присоединительные размеры АВД приведены в приложении В.
- Принципиальные электрические схемы АВДТ приведены в приложении Г.
- 1.7 АВДТ соответствуют требованиям ГОСТ IEC 61009–1–2020, ГОСТ 9219–88, ГР ТС 001/2011, ГР ТС 004/2011, ГР ТС 0020/2011, ГР ЕАЗС 037/2016 и изготавливаются по ТУЗ422–046–05758109–2008 и ТУЗ422–046–05758109–2008 Д.
- 1.8 Для АВДТ с климатическим исполнением УХЛ4, УЗ, ОМ4 возможно присоединение независимого расцепителя ОрtiDin HP (руководство по эксплуатации ГЖИК. 641266.029РЭ) в отдельном модуле, вспомогательных контактов ОрtiDin MCK1, ОрtiDin MCK2, ОрtiDin MCCK2 (руководство по эксплуатации ГЖИК. 685112.030РЭ) в отдельном модуле, расцепителя минимального и максимального напряжения ОрtiDin РММН (руководство по эксплуатации ГЖИК. 641266.059РЗ). Независимый расцепитель, расцепитель минимального и максимального напряжения и вспомогательные контакты заказываются отдельно и устанавливаются на АВДТ потребителем по мере необходимости. Способ монтажа аксессуаров к АВДТ показан в приложении Д.
- 1.9 Зависимость номинальных токов от температуры отгружающей среды указана в приложении E.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Классификация АВДТ
- 2.1.1 По способу управления:
- функционально зависящие от напряжения сети, не размыкающиеся автоматически в случае исчезновения напряжения сети (способные размыкаться при замыкании на землю).

- 2.1.2 По способу установки:
- для стационарной установки при неподвижной проводке.
- 2.1.3 По условиям регулирования отключающего дифференциального
- с одним значением номинального отключающего дифференциального тока.
- 2.1.4 По условиям устойчивости к нежелательному срабатыванию от воздействия импульсов напояжения:
- с нормальной устойчивостью к нежелательному срабатыванию (общего типа).
- 2.1.5 По наличию задержки по времени (в присутствии дифференциального тока) без выдержки времени тип для общего применения.
- 2.1.6 По способу защиты от внешних воздействующих факторов:
- незащищенного исполнения (для использования с дополнительной оболочкой).
- 2.1.7 По способу присоединения внешних проводников:
- АВДТ, присоединения которых связаны с механическими креплениями
- 2.2 Технические характеристики
- 2.2.1 Основные технические характеристики АВДТ приведены в таблице 1.

Таблица 1 - Технические характеристики АВДТ

Наименование парамет	Значение							
Число полюсов	двухполюсные с одним защищенным от сверхтока полюсом							
Номинальное рабочее наг	ряжение Ue, B	230						
Номинальное напряжение - для двухполюсных - для четырехполюсных	230 400							
Номинальное импульсное	выдерживаемое напряжение (U _{imp}), кВ	4						
Номинальная частота, Гц	·	50/60						
Номинальный рабочий то	« In, A	6; 10; 16; 20; 25; 32; 40						
Тип защитной характерис		B; C; D						
Номинальный отключающий	для АВДТ на номинальные токи 6; 10; 16; 20; 25; 32; 40 A	0,01; 0,03						
дифференциальный ток I∆n, A	для АВДТ на номинальные токи 16; 20; 25; 32; 40 A	0,1; 0,3						
Номинальный неотключан	ощий дифференциальный ток I∆no, A	0,5 I∆n						
Номинальная наибольшая	6000							
Номинальная дифференц способность I∆m, A	3000							
Рабочая характеристика в составляющей постоянно	случае дифференциального тока с го тока, тип	A*						
Механическая износостой	6000							
Коммутационная износос	тойкость, циклов	4000						
Степень защиты по ГОСТ 1	4254 - 2015	IP20						
Сечение провода, присоед	диняемого к выводным зажимам, мм²	1÷25						
Затяжка винтов креплени: производиться с крутящи	я токоподводящих проводников м моментом, Н·м	2,0±0,4						
	T, лет; для АВДТ с приемкой для порта - назначенный срок службы, лет	15						
Наличие серебра, г		0,119						
Климатическое исполнен ГОСТ 15150-69	Климатическое исполнение и категория размещения по ГОСТ 15150-69							
Рабочий режим		продолжи- тельный						
Мощность, потребляемая	без нагрузки, (B-A)	не более 0,7						
Масса АВДТ, кг		0,19						

IAn – определяет действующее значение переменного тока при номинальной частоте.
*ABДТ работоспособно как при синусоидальном переменном дифференциальном
токе частоты 50/60Гц, так и при дифференциальном пульсирующем постоянном токе,
прикладываемом скачком, либо медленно растущем.

2.2.2 Ток отключения АВДТ типа А и соответствующее время отключения должны соответствовать значениям таблицы 2.

Таблица 2 - Ток отключения АВДТ

Угол задержки	Отключающий дифф	реренциальный ток, А				
тока, а	Нижний предел	Верхний предел				
0°	0,35 I∆n					
90°	0,25 I∆n	1,4 I∆n (при I∆n ≥ 0,01A) 2 I∆n (при I∆n ≤ 0,01A)				
135°	0,11 I∆n	2 12dl (lipu 12dl = 0,01A)				

2.2.3 Для АВДТ типа А максимальные значения времени отключения при дифференциальных токах полупериода (действующее значение) приведены в таблице 3.

Таблица 3 - Значения времени отключения при диф. токах полупериода

Типи	параметры	C, J	для АВ, полуп	ные зна ЦТ типа ериода диффер	А при , (дейст	дифф гвующ	еренци ие зна	альнь	ıΧ		
Тип	In, A	1.4I∆n	2I∆n	2,8I∆n	4I∆n	7I∆n	0,35A	0,5A	350A*		
	Любое значе- ние	Любое	Менее 0,03		0,03		0,15			0,04	0,04
Общий		0,03	0,3		0,15			0,04		0,04	
		Св.0,03	0,3		0,15		0,04			0,04	
S	Св. или равно 25	Св. 0,03	0,5		0,2		0,15			0,15	

^{*}Данное значение ограничено нижним пределом диапазона токов мгновенного расцепления согласно типу В, С или D, в зависимости от того, какой применим.

2.2.4 Время-токовые характеристики в режиме сверхтоков при контрольной температуре плюс 30° -5°° и 45° -5°° соответствуют ГОСТ IEC 61009-1-2020 и приведены в таблице 4.

Таблица 4 - Время-токовые характеристики в режиме сверхтоков

Тип за- щитной характе- ристики	Испыта- тельный перемен- ный ток	Начальное состояние	Пределы времени расцепления или нерасцепле- ния	Требуемые резуль- таты	Примеча- ние	
	1,13 In	Холодное	t≥14	Без рас- цепления		
B, C, D	1,45 In	Немедленно после испы- тания на но- минальный ток 1,13 In	t<14	Расцепле- ние	Непрерыв- ное нарас- тание тока в течение 5 с	
	2,55 In	Холодное	1 c < t ≤ 60 с (при In < 32A) 1c < t < 120 с (при In > 32A)	Расцепле- ние	-	
В	3 In					
С	5 In	Холодное	t≤0,1c	Без рас- цепления	Toy ocono	
D	10 In				Ток созда- ется путем замыкания	
В	5 In				вспомога- тельного выключа-	
С	10 In Холодное		t<0,1c	Расцепле- ние	теля	
D	20 In					

¹ Термин «холодное» состояние означает без предварительного пропускания тока при контрольной температуре калибровки.

2.2.5 Значения климатических и механических факторов для выключателей с приёмкой РЕГ указаны в таблице 5 и 6.

Таблица 5 - Климатические и механические факторы для выключателей с приёмкой РЕГ

Воздействующий фактор	Характеристика воздействующего фактора	действ	ие воз- ующего тора	
	, . , .	PK0	PMPC	
	Диапазон частот, Гц	2-80	2-13,2	
Синусоидальная вибрация	Амплитуда перемещений, мм	см. та- блицу 6	1	
оинуссидальная виорация	Диапазон частот, Гц	-	13,2-80	
	Амплитуда ускорений, д	-	0,7	
	Пиковое ударное ускорение, д		5	
Механический удар много- кратного действия	Длительность действия удар- ного ускорения, мс	2-20		
	Частота ударов в минуту	40-80		
Качка	Амплитуда качки, град	±22,5	±30	
Качка	Период, с	4	7-9	
Наклон длительный	Максимальный угол наклона, град	15		
Повышенная температура	Рабочая, °C	55	55	
среды	Предельная, ⁰С	60	60	
Пониженная температура	Рабочая, °С	Минус 45	Минус 10	
среды	Предельная, ⁰С	Минус 50	Минус 45	
Портиновинов разовите	Относительная влажность, %	50	75	
Повышенная влажность	Температура, °C	40	45	
	·			

Таблица 6 – Дополнительные воздействующие факторы для выключателей с приёмкой РЕГ

Диапазон частот синусоидальной вибрации для исполнений РКО, Гц	Амплитуда, мм
2-8	1,0
8-16	0,5
16-31,5	0,25
31,5-63	0,12
63-80	0,1

3. УСТРОЙСТВО И РАБОТА АВДТ

- 3.1 АВДТ состоят из:
- защищенного полюса, представляющего собой выключатель автоматический, состоящий из теплового и электромагнитного расцепителя;
- незащищенного полюса, коммутирующего нейтраль, трансформатора тока, электронной схемы усиления, независимого расцепителя и устройства эксплуатационного контроля кнопки «Т».

² Условные токи нерасцепления 1,13 In и расцепления 1,45 In проверяются при пропускании тока через все полюса АВДТ, соединенные последовательно.

³ Ток, равный 2,55 Іп, проверяется при пропускании тока через все полюса выключателя, соединенные последовательно, начиная с холодного состояния.

- 3.2 С помощью защелки обеспечивается установка АВДТ в распределительных шкафах на стандартных 35 мм рейках.
- 3.3 Полюс, коммутирующий нейтраль, размыкается позже и замыкается раньше других полюсов.
- 3.4 Конструкция выводных зажимов для присоединения внешних проводников главной цепи обеспечивает возможность присоединения медных и алюминиевых проводников сечением от 1 до 25 мм², соединительной шины типа PIN (штырь) или FORK (вилка).

Выводные зажимы АВДТ допускают присоединение медных гибких (многожильных) проводников сечением от 1 до 10 мм² и медных жестких (многожильных или одножильных) проводников сечением от 1 до 16 мм² без подготовки токоведущей жилы проводника.

Выводные зажимы АВДТ допускают присоединение медных гибких многожильных проводников сечением 25 мм² с подготовкой жилы проводника в соответствии с приложением И.

Выводные зажимы АВДТ допускают присоединение алюминиевых одножильных и многожильных проводников сечением от 1 до 10 мм² без подготовки токоведущей жилы проводника.

Выводные зажимы АВДТ допускают присоединение алюминиевых гибких и жестких проводников сечениями 16 и 25 мм² с подготовкой жилы проводника в соответствии с приложением И.

- 3.5 Отключение АВДТ при перегрузках, коротких замыканиях, токах утечки происходит независимо от того, удерживается ли ручка во включенном положении или нет.
- 3.6 Требования к электрическим параметрам.
- 3.6.1 АВДТ автоматически отключают защищаемый участок сети при появлении в нем:
- тока утечки на землю (переменного типа АС или постоянного пульсирующего типа А), превышающего значение нерегулируемой уставки срабатывания с индикацией отключённого состояния;
- короткого замыкания или перегрузки по току нагрузки с индикацией отключённого состояния:
- 3.6.2 АВДТ размыкается после нажатия на кнопку «Т» в диапазоне рабочих напряжений от 0.85 до 1.1 Un.
- 3.6.3 АВДТ не размыкаются при снятии и повторном включении напряжения сети и коммутации тока нагрузки.
- 3.6.4 Включение АВДТ и повторное включение после устранения причины срабатывания должно производиться посредством перевода ручки в положение «Т».
- 3.6.5 Сопротивление изоляции сухого, не бывшего в эксплуатации АВДТ в нормальных климатических условиях не менее 50 МОм.
- 3.6.6 Электрическая прочность изоляции АВДТ в нормальных условиях выдерживает в течение 1 минуты без пробоя и поверхностного перекрытия воздействие испытательного напряжения 2000 В (действующее значение) переменного тока частотой 50 Гц.
- 3.6.7 АВДТ сохраняет работоспособность с сохранением всех рабочих характеристик по дифференциальному току в диапазоне рабочих напряжений от 0.85 до 1.1Un.
- 3.7 Требования по устойчивости к внешним воздействиям.
- 3.7.1 ABДТ сохраняет работоспособность в процессе воздействия климатических факторов:
- верхнего значения температуры окружающей среды плюс 55 °C;
- нижнего значения температуры окружающей среды минус 40 °C;
- верхнего значения относительной влажности 98% при плюс 25 °C;

В процессе эксплуатации АВДТ при температуре свыше плюс 30 °C или 45 °C номинальный ток необходимо корректировать в соответствии с при-

При эксплуатации АВДТ на высоте свыше 1000 м (но не более 2000 м) верхнее значение температуры окружающей среды должно быть снижено на $0.6 \, ^{\circ}\mathrm{C}$ на каждые $100 \, \mathrm{M}$.

- 3.7.2 Номинальные значения механических внешних воздействующих факторов – по ГОСТ 30631–99 для группы механического исполнения М1. 3.7.3 Металлические и неметаллические покрытия в АВДТ обеспечивают необходимую коррозийную стойкость в условиях эксплуатации и хранения и выбираются по ГОСТ 9.005.
- 3.7.4 Внешнее воздействующее магнитное поле не более пятикратного значения магнитного поля Земли в любом направлении.
- 3.7.5 Жесткость условий эксплуатации АВДТ относительно опасности трекинга в соответствии с ГОСТ IEC 60335–1–2015– нормальные условия эксплуатации. 3.7.6 Допускаемое отклонение частот от номинального значения \pm 2%.
- 3.7.7 Искажение синусоидальной формы кривой не более 5%

4. ТРЕБОВАНИЯ И БЕЗОПАСНОСТЬ

- 4.1 АВДТ соответствуют требованиям безопасности по ГОСТ 12.2.007.0, соответствуют классу 0 защиты от поражения электрическим током и должны встраиваться в щитки класса защиты не ниже I по ГОСТ 12.2.007.6.
- 4.2 Степень защиты от соприкосновения с находящимися под напряжением частями АВЛТ IP20 по ГОСТ 14254—2015.
- 4.3 АВДТ имеют указатель коммутационного положения контактов. В качестве указателя используется рукоятка АВДТ и цветной индикатор. Коммутационное положение АВДТ указывается знаками и состоянием цветов индикатора:
- отключенное положение 0 индикатор зеленого цвета;
- включенное положение I индикатор красного цвета.
- 4.4 Усилие оперирования ручкой включения АВДТ не более 50 H, кнопкой T не более 10 H.
- 4.5 Пожаробезопасность АВДТ соответствует требованиям ГОСТ IEC 61009–1–2020, ГОСТ 12.1.004, нормам пожарной безопасности НПБ 243–97 и обеспечивается конструкцией и применением огнестойких материалов. 4.6 Минимальные расстояния от АВДТ до металлических частей изделий распределительного устройства должны соответствовать значениям, указанным в приложении Ж.

5. ПРАВИЛА МОНТАЖА

- 5.1 Монтаж АВЛТ произволится при снятом напряжении.
- 5.2 Перед установкой АВЛТ необходимо проверить:
- соответствие исполнения АВДТ, предназначенному к установке;
- внешний вид, отсутствие повреждений;
- четкость включения и отключения вручную и одновременно изменение состояния цвета индикатора.
- 5.3 АВДТ устанавливаются в закрытых распределительных шкафах на стандартной монтажной 35 мм рейке (DIN-рейке).
- 5.4 Напряжение от источника питания подводится к выводам «1» и «N» со стороны маркировки знака «I».

ВНИМАНИЕ

Для обеспечения срабатывания защиты от сверхтоков фазный проводник необходимо подключать к контактным зажимам «1» и «2» АВДТ, нейтральный проводник к контактным зажимам «№. При установке необходимо убедиться в том, что в зоне защиты АВДТ нулевой рабочий проводник «№ не имеет соединений с заземленными элементами и нулевым защитным проводником РЕ.

- 5.5 Затяжка винтов крепления токоподводящих проводников должна производиться с крутящим моментом $(2,0\pm0.4)$ Н·м.
- Б.6 АВДТ применяется в системах заземления TN-S, TN-C-S, TT, IT и регламентируется ГОСТ 32395–2020.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1 При нормальных условиях эксплуатации необходимо проводить осмотр АВДТ один раз в год.
 При осмотре производится:
- удаление пыли и грязи;
- проверка надежности крепления ABДT к DIN-рейке;
- проверка затяжки винтов крепления токопроводящих проводников;
- включение и отключение АВДТ без нагрузки;
- проверка отключения АВДТ кнопкой «Т»;
- проверка работоспособности АВДТ в составе аппаратуры при проверке ее на функционирование при рабочих режимах.
- 6.2 При отключении АВДТ при токах утечки на землю и коротких замыканиях повторное включение производится после устранения причин, вызвавших токи утечки и короткое замыкание.
- 6.3 Указания по эксплуатации
- 6.3.1 Монтаж, подключение, эксплуатация АВДТ производятся в соответствии с документами: «Правила технической эксплуатации электроустановок потребителей электрической энергии», утвержденными приказом Минэнерго России № 811 от 12.08.2022, «Правилами по охране труда при эксплуатации электроустановок» утверждёнными приказом Минтруд России № 903н от 15.12.2020, «Руководство по эксплуатации» и осущест-

вляться только квалифицированным электротехническим персоналом. Возможность использования АВДТ в условиях, отличных от указанных в разделе 7, должна согласовываться с изготовителем.

- 6.3.2 Эксплуатация АВДТ производится в нормальных условиях относительно опасности трекинга по ГОСТ IEC 60335-1-2015 при отсутствии электропроводящей пыли, агрессивной среды, разрушающей металлы и изоляцию. 6.4 После монтажа и проверки его правильности АВДТ включают, подают напряжение и нажимают кнопку «Т». АВДТ должен отключиться, что свидетельствует об исправности. После этого можно приступать к его эксплуатации. 6.5 Проверка исправности АВДТ производится нажатием на кнопку «Т». Периоличность проверки не реже олного раза в месяц.
- 6.6 АВДТ в условиях эксплуатации ремонту не подлежат.
- 6.7 При обнаружении неисправности АВДТ подлежат замене.

7. УСЛОВИЯ ЭКСПЛУАТАЦИИ

- 7.1 Диапазон рабочих температур от минус 40 $^{\circ}$ С до плюс 55 $^{\circ}$ С (без выпадения росы и инея).
- 7.2 Высота монтажной площадки над уровнем моря не более 2000 м.
- 7.3 Относительная влажность не более 98% при температуре плюс 25 °C.
- 7.4 Рабочее положение в пространстве вертикальное, знаком «I» (включено) вверх (допускается отклонение от рабочего положения не более 2° в любую сторону).
- 7.5 Механические воздействующие факторы по группе М1 ГОСТ 30631–99.

8. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 8.1 Транспортирование АВДТ в части воздействия механических факторов осуществляется по группе С ГОСТ 23216–78, климатических факторов по группе 5 (ОЖ4) ГОСТ 15150–69.
- 8.2 Хранение АВДТ в части воздействия климатических факторов по группе 2(0) ГОСТ 15150-69. Хранение АВДТ осуществляется в упаковке изготовителя в помещениях с естественной вентиляцией при температуре окружающего воздуха от минус 50 °C до плюс 60 °C и относительной влажности 75% при 15 °C.
 8.3 Допустимые сроки сохраняемости 5 лет.
- 8.4 Транспортирование упакованных АВДТ должно исключить возможность непосредственного воздействия на них атмосферных осадков и агрессивных сред.

9. СВЕДЕНИЯ О МАРКИРОВКЕ

- 9.1 Маркировка АВДТ находится на лицевой и правой боковой частях и соответствует требованиям ГОСТ IEC 61009–1–2020.
- 9.2 Маркировка упаковки находится на упаковочном ярлыке и соответствует ТР ТС 004/2011

10. СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

10.1 АВДТ после окончания срока службы подлежит разборке и передаче организациям, которые перерабатывают черные и цветные металлы.
10.2 Опасных для здоровья людей и окружающей среды веществ и металлов в конструкции АВДТ нет.

ПАСПОРТ

ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ, УПРАВЛЯЕМЫЕ ДИФФЕРЕН-ЦИАЛЬНЫМ ТОКОМ, БЫТОВОГО И АНАЛОГИЧНОГО НАЗНАЧЕНИЯ СО ВСТРОЕННОЙ ЗАШИТОЙ ОТ СВЕРХТОКА ТИПА OptiDin D63

Основные технические характеристики

Указаны на маркировке АВДТ

Комплект поставки:

АВДТ типа OptiDin D63 с заглушками для пломбировки (типоисполнение см. на маркировке) - 1 шт.;

Руководство по эксплуатации, совмещенное с паспортом - 1 экз.; Упаковка - 1 шт.

Примечание – Вследствие постоянной работы по усовершенствованию существующей конструкции может быть некоторое несоответствие между описанием и изделием. Дополнительную информацию можно найти на сайте www.leaz.ru.

7

ПРИЛОЖЕНИЕ А (обязательное)

Структура условного обозначения независимого расцепителя в отдельном модуле

OptiDin D63	-	2	Х	Х	ХХ	-	Α	-	XXXX	-	XXX	-	(2P, XXX, XXXmA)
1		2	3	4	5		6		7		8		9

- 1 обозначение АВДТ:
- 2 число полюсов:
- значение номинального отключающего дифференциального тока: 1-0.01 A: 2-0.03 A: 3-0.1 A: 4-0.3 A:
- 4 характеристика срабатывания электромагнитного расцепителя: В; С; D;
- -значение номинального тока: 6; 10; 16; 20; 25; 32; 40;
- 6 обозначение типа рабочей характеристики по дифференциальному току: -А;
- 7 обозначение климатического исполнения и категории размещения по ГОСТ 15150
- 8 вид приемки:
 - при отсутствии приемка ОТК,
 - РЕГ приемка регистра,
- RR приемка для железнодорожного транспорта.
- 9 краткое перечисление основных характеристик АВДТ

Пример записи двухполюсного ABIIT типа OptiDin D63 при заказе и в документации других изделий:

 АВДТ с номинальным отключающим дифференциальным током 0,01 А, с характеристикой срабатывания электромагнитного расцепителя С, на номинальный ток 16 А, с типом рабочей характеристики по дифференциальному току А. климатическое исполнение УЗ:

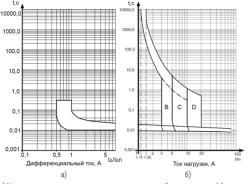
«АВДТ с защитой от сверхтоков OptiDin D63-21C16-A-У3 (2P, C16, 10mA) TY3422-046-05758109-2008».

 АВДТ с номинальным отключающим дифференциальным током 0.03 А. с характеристикой срабатывания электромагнитного расцепителя С. номинальным током нагрузки 40 А. с типом рабочей характеристики по дифференциальному току А. климатическое исполнение ОМ4. с приемкой РМРС:

«АВДТ с защитой от сверхтоков OptiDin D63-22C40-A-OM4-PEГ (2P. C40. 30MA) TY3422-046-05758109-2008».

 АВДТ с номинальным отключающим дифференциальным током 0,01 А, с характеристикой срабатывания электромагнитного расцепителя В, номинальным током нагрузки 25А, с типом рабочей характеристики по дифференциальному току А, климатическое исполнение УЗ, с приемкой РКО:

«АВДТ с защитой от сверхтоков OptiDin D63-21B25-A-У3-РЕГ (2P, B25, 10MA) TV3422-046-05758109-2008».

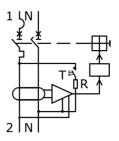

- АВДТ с номинальным отключающим дифференциальным током 0.1 А. с характеристикой срабатывания электромагнитного расцепителя D, номинальным током нагрузки 32A, с типом рабочей характеристики по дифференциальному току А, климатическое исполнение УЗ, с приемкой для железнодорожного транспорта

«АВДТ с защитой от сверхтоков OptiDin D63-23D32-A-V3-RR (2P, D32, 100mA) TY3422-046-05758109-2008».

ПРИЛОЖЕНИЕ Б (справочное)

Время-токовые характеристики отключения АВДТ

Рисунок Б.1 - Время-токовые характеристики отключения АВДТ



- а) Характеристика отключения и пределы времени срабатывания по дифференци-
- $I\Delta/I\Delta$ п кратность дифференциального тока отключения к номинальному отключающему дифференциальному току.
- б) Защитная характеристика в условиях действия сверхтоков при контрольной температуре плюс 30°С*5°С и 45°С *5°С, с холодного состояния, при пропускании тока через все полюса АВДТ, соединенные последовательно.
- I/In кратность тока нагрузки к номинальному току теплового расцепителя.

ПРИЛОЖЕНИЕ Г (обязательное)

Принципиальная электрическая схема АВДТ

Рисунок Г.1 - Принципиальная электрическая схема АВДТ

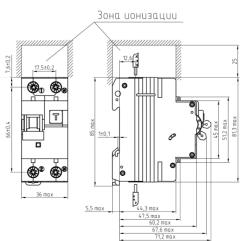
- Т устройство эксплуатационного контроля (кнопка «Т» тест)
- R токоограничивающее сопротивление

ПРИЛОЖЕНИЕ Е (справочное)

Зависимость номинального рабочего тока АВДТ от температуры окружающего воздуха.

Таблица Е.1 - Для климатических исполнений УХЛ4 и УЗ. Контрольная температура +30° +5°€

T- A				Темг	ератур	оа окр	ужаюц	цей ср	еды,	°C			
In, A	-50	-40	-30	-20	-10	0	10	20	30	40	50	55	60
6	7,9	7,7	7,4	7,2	7	6,7	6,5	6,2	6	5,8	5,6	5,4	5,3
10	13,2	12,8	12,4	12	11,6	11,2	10,8	10,4	10	9,6	9,2	9	8,9
16	21,1	20,5	19,8	19,2	18,6	17,9	17,3	16,6	16	15,4	14,7	14,4	13,5
20	26,4	25,6	24,8	24	23,2	22,4	21,6	20,8	20	19,2	18,4	18	16,5
25	33	32	31	30	29	28	27	26	25	24	23	22,5	21
32	42,2	41	39,7	38,4	37,1	35,8	34,6	33,3	32	30,7	29,4	28,8	27,5
40	52,8	51,2	49,6	48	46,4	44,8	43,2	41,6	40	38,4	36,8	36	35


Таблица Е.2 - Для климатического исполнения ОМ4. Контрольная температура +45° +5°С

-50	-40	-30		Температура окружающей среды, °С												
		-30	-20	-10	0	10	20	30	40	45	50	55	60			
8,28	8,04	7,8	7,56	7,32	7,08	6,84	6,6	6,36	6,12	6	5,88	5,64	5,4			
13,8	13,4	13	12,6	12,2	11,8	11,4	11	10,6	10,2	10	9,8	9,4	9,0			
22,1	21,4	20,8	20,2	19,5	18,9	18,2	17,6	17	16,3	16	15,7	15	14,3			
27,6	26,8	26	25,2	24,4	23,6	22,8	22	21,2	20,4	20	19,6	18,8	18			
34,5	33,5	32,5	31,5	30,5	29,5	28,5	27,5	26,5	25,5	25	24,5	23,5	22,5			
44,2	42,9	41,6	40,3	39	37,8	36,5	35,2	33,9	32,64	32	31,4	30,1	28,8			
55,2	53,6	52	50,4	48,8	47,2	45,6	44	42,4	40,8	40	39,2	37,6	36			
	13,8 22,1 27,6 34,5 44,2	13,8 13,4 22,1 21,4 27,6 26,8 34,5 33,5 44,2 42,9	13,8 13,4 13 22,1 21,4 20,8 27,6 26,8 26 34,5 33,5 32,5 44,2 42,9 41,6	13.8 13.4 13 12.6 22.1 21.4 20.8 20.2 27.6 26.8 26 25.2 34.5 33.5 32.5 31.5 44.2 42.9 41.6 40.3	13.8 13.4 13 12.6 12.2 22.1 21.4 20.8 20.2 19.5 27.6 26.8 26 25.2 24.4 34.5 33.5 32.5 31.5 30.5 44.2 42.9 41.6 40.3 39	13.8 13.4 13 12.6 12.2 11.8 22.1 21.4 20.8 20.2 19.5 18.9 27.6 26.8 26 25.2 24.4 23.6 34.5 33.5 32.5 31.5 30.5 29.5 44.2 42.9 41.6 40.3 39 37.8	13.8 13.4 13 12.6 12.2 11.8 11.4 22.1 21.4 20.8 20.2 19.5 18.9 18.2 27.6 26.8 26 25.2 24.4 23.6 22.8 34.5 33.5 32.5 31.5 30.5 29.5 28.5 44.2 42.9 41.6 40.3 39 37.8 36.5	13.8 13.4 13 12.6 12.2 11.8 11.4 1 22.1 21.4 20.8 20.2 19.5 18.9 18.2 17.6 27.6 26.8 26 25.2 24.4 23.6 22.8 22 34.5 33.5 32.5 31.5 30.5 29.5 28.5 27.5 44.2 42.9 41.8 40.3 39 37.8 36.5 35.2	13.8 13.4 13 12.6 12.2 11.8 11.4 11 10.6 22.1 21.4 20.8 20.2 19.5 18.9 18.2 17.6 17 27.6 26.8 26 25.2 24.4 23.6 22.8 22 21.2 34.5 33.5 32.5 31.5 30.5 29.5 28.5 27.5 26.5 44.2 42.9 41.8 40.3 39 37.8 36.5 35.2 33.9	13.8 13.4 13 12.6 12.2 11.8 11.4 11 10.6 10.2 22.1 21.4 20.8 20.2 19.5 18.9 18.2 17.6 17 16.3 27.6 26.8 26 25.2 24.4 23.6 22.8 22 21.2 20.4 34.5 33.5 32.5 31.5 30.5 29.5 28.5 27.5 26.5 25.5 44.2 42.9 41.6 40.3 39 37.8 36.5 35.2 33.9 32.84	13.8 13.4 13 12.6 12.2 11.8 11.4 11 10.6 10.2 10 22.1 21.4 20.8 20.2 19.5 18.9 18.2 17.6 17 16.3 16 27.6 26.8 26 25.2 24.4 23.6 22.8 22 21.2 20.4 20 34.5 33.5 32.5 31.5 30.5 29.5 28.5 27.5 26.5 25.5 25 44.2 42.9 41.6 40.3 39 37.8 36.5 35.2 33.9 32.84 32	13.8 13.4 13 12.6 12.2 11.8 11.4 11 10.6 10.2 10 9.8 22.1 21.4 20.8 20.2 19.5 18.9 18.2 17.6 17 16.3 16 15.7 27.6 26.8 26 25.2 24.4 23.6 22.8 22 21.2 20.4 20 19.6 34.5 33.5 32.5 31.5 30.5 29.5 28.5 27.5 26.5 25.5 25 24.5 44.2 42.9 41.6 40.3 39 37.8 36.5 35.2 33.9 32.6 32. 31.4	13.8 13.4 13 12.6 12.2 11.8 11.4 11 10.6 10.2 10 9.8 9.4 22.1 21.4 20.8 20.2 19.5 18.9 18.2 17.6 17 16.3 16 15.7 15 27.6 26.8 26 25.2 24.4 23.6 22.8 22 21.2 20.4 20 19.6 18.8 34.5 33.5 32.5 31.5 30.5 29.5 28.5 27.5 26.5 25.5 25 24.5 23.5 44.2 42.9 41.6 40.3 39 37.8 36.5 35.2 33.9 32.64 32 31.4 30.1			

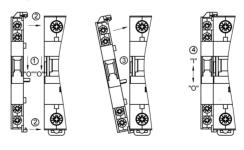
ПРИЛОЖЕНИЕ В (обязательное)

Габаритные, установочные и присоединительные размеры АВДТ

Рисунок В.1 - Габаритные, установочные и присоединительные размеры АВДТ

ПРИЛОЖЕНИЕ Д (обязательное) Присоединение аксессуаров к ABДT OptiDin D63

Рисунок Д.1 - Присоединение OptiDin MCK1, OptiDin MCK2, OptiDin MCCK2 κ ABΩT OptiDin D63



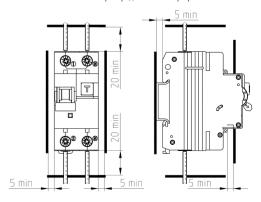


Рисунок Д.2 - Присоединение OptiDin HP, OptiDin PMMH к ABДТ OptiDin D63

ПРИЛОЖЕНИЕ Ж (справочное)
Особенности установки АВДТ в распределительных устройствах

Рисунок Ж.1- Минимально-допустимые расстояния от АВДТ до металлических заземленных частей распределительных устройств

Гибкие проводники должны быть изолированы на длине не менее 20 мм от АВДТ.

13

10 11 12