Руководство по эксплуатации ГЖИК.641353.066РЭ (совмещенное с паспортом)

выключатели автоматические OptiMat E250

1 назначение

Настоящее руководство по эксплуатации предназначено для ознакомления с техническими данными, устройством, правилами эксплуатации, хранения и заказа трехполюсных автоматических выключателей типа OptiMatE250 (далее выключатели).

Выключатели предназначены для поставок на внутренний рынок, экспорт, а также для поставок на АЭС и для собственных нужд Российских железных дорог (далее РЖД), для проведения тока в нормальном режиме и отключения тока при коротких замыканиях, перегрузках, а также до 30 оперативных включений и отключений электрических цепей в сутки и рассчитаны для эксплуатации в электроустановках на номинальное напряжение до 690 В переменного тока частотой 50, 60 Гц с рабочими токами от 125 до 250 А. Выключатели с приёмкой Российского морского регистра судоходства (далее РС) и приёмкой Российского Классификационного Общества (далее РКО) предназначены для применения в судовом электрооборудовании.

Выключатели, а также дополнительные устройства/детали к ним, изготавливаются по ТУ3422-055-05758109-2012, дополнению ТУ3422-055-05758109-2012Д (для выключателей с приёмкой РС и РКО) и соответствуют ТР ТС 004/2011, ГОСТ Р 50030.2

TOCT P 50030.2.

Структура условного обозначения выключателя

OptiMat E250X₁X₂X₃X₄-X₅...-X₆...

OptiMat E - обозначение серии выключателя.

250 – обозначение номинального тока выключателя. X₁ – условное обозначение предельной коммутационной способности:

L - низкая,

N - стандартная,

Н - высокая.

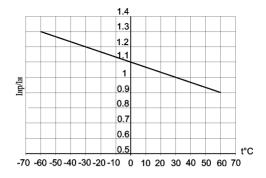
 ${f X_2 X_3 X_4}$ – значение номинального тока расцепителей

 $\mathbf{X_{5}...}$ - обозначение климатического исполнения и категории размещения:

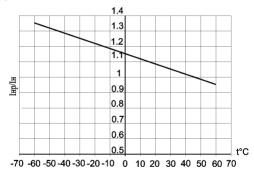
УХЛ3;

ОМ4 (для выключателей с приёмкой РС).

 \mathbf{X}_{6} ... - вид приёмки, условия поставки: РЕГ - приёмка РС или РКО; Э – для поставок на экспорт; АЭС – для атомных электростанций; RR - для РЖД; при отсутствии - приёмка ОТК.


2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Условия эксплуатации.
- 2.1.1 Рабочее положение выключателей в пространстве любое, кроме положения под плоскостью закрепления.
- 2.1.2 Окружающая среда не должна содержать газы в концентрациях, нарушающих работу выключателя.
- 2.1.3 Непосредственное воздействие солнечной радиации должно отсутствовать.
- 2.1.4 Место установки выключателя должно быть защищено от попадания воды, масла, эмульсии и т.п.
 - 2.1.5 Срок службы выключателей не менее 10 лет.
- 2.1.6 Условия эксплуатации для исполнения УХЛЗ:
- нормальные условия эксплуатации по ГОСТ IEC 60947-1;
 - высота над уровнем моря не более 2000 м;
- температура и влажность окружающего воздуха по ГОСТ 15150;
- степень загрязнения среды 3 по ГОСТ IEC 60947-1;
- номинальные рабочие значения механических воздействующих факторов по ГОСТ 30631 для групп М3 и M25;
- температура окружающего воздуха от минус 60 до плюс 40 °C.
- 2.1.7 Значения климатических и механических факторов для выключателей с приёмкой РС указаны


в таблице 1. Таблица 1

Воздействую- щий фактор			
	Диапазон частот, Гц	2-13,2	
Синусоидаль-	Амплитуда перемещений, мм	1	
ная вибрация	Диапазон частот, Гц	13,2-80	
	Амплитуда ускорений, д	0,7	
Механиче-	Пиковое ударное ускоре- ние, g	5	
ский удар многократного действия	Длительность действия удар- ного ускорения, мс	2-20	
денетвия	Частота ударов в минуту	40-80	
Качка	Амплитуда качки, град	±22,5	
Качка	Период, с	7-9	
Наклон длительный	Максимальный угол наклона, град	15	
Повышенная	Рабочая, ⁰С	45	
температура среды	Предельная, °С	70	
Пониженная	Рабочая, °С	- 10	
температура среды	Предельная, °С	- 50	
Повышенная	Относительная влажность, %	75	
влажность	Температура, °С	45	

2.1.8 Зависимость номинальных рабочих токов выключателей от температуры окружающей среды приведена на рисунках 1 и 2.

Рисунок 1 - Зависимость номинальных рабочих токов выключателей от температуры окружающей среды

Рисунок 2 - Зависимость номинальных рабочих токов выключателей с приёмкой РС от температуры окружающей среды

2.2 Главные цепи. Номинальное рабочее напряжение ($U_{\rm e}$), B – 690. Минимальное рабочее напряжение, В - 24.

Номинальная частота, Гц - 50, 60.

Номинальные токи расцепителей (I) и токовые уставки (I, схеме рисунка 7 обозначено, как «I>») приведены в таблице 2.

Таблина 2

-		
Тип выключателя	Номинальные токи расцепителей (I_n) , А	Токовые уставки максимальных расцепителей тока короткого замыкания (${ m I_i}$), A
	125	1250
OptiMat E250	160	1600
Optimat E250	200	2000
	250	2500

Номинальное импульсное выдерживаемое напряжение (U_{imp}), кВ - 6.

Номинальная предельная наибольшая отключающая способность (І приведена в таблице 3.

Таблица 3

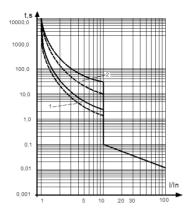
Номинальный ток (In), A	Номинальная предельная наибольшая отключаю- щая способность (Icu), кА						
л, (п		Тип ком	імутацио	нной спос	обности		
NH3	Низка	эя (L)	Стандар	тная (N)	Высок	ая (Н)	
MO TO	Рабочее напряжение Ue, В						
I	400 690 400 690		400	690			
125							
160	18 7.5 25 10			10 7 5 25 10	35 10 10	40	12
200				10	40	12	
250							

Номинальная рабочая наибольшая отключающая

способность выключателя $I_{\rm cs} = 50\% I_{\rm cu}$. Степень защиты от воздействия окружающей среды и от соприкосновения с токоведущими частями:

- IP20 оболочка выключателя;
- IP00 выводы выключателя (с клеммными крышками - ІР20).

- Износостойкость выключателя не менее, циклов включено-отключено (CO):
- общая 8000, в том числе коммутационная 1000.


Для выключателей с независимым расцепителем напряжения обеспечивается 1000 срабатываний под воздействием независимого расцепителя в счет циклов механической износостойкости.

Износостойкость под действием максимальных расцепителей тока – 50 циклов CO.

- 2.4 Выключатели имеют тепловые и электромагнитные расцепители тока для защиты в зоне токов перегрузки и короткого замыкания.
- 2.4.1 Расцепители тока перегрузки при контрольной температуре 30 °C (45 °C для выключателей с приёмкой PC) при нагрузке всех полюсов имеют:
 - условный ток нерасцепления 1,05І.;
 - условный ток расцепления 1,3I₋;
 - условное время 2 ч.

Расцепители тока перегрузки при нагрузке каждого отдельного полюса током $2I_{_{\rm n}}$ срабатывают за время от 60 до 250 с.

- 2.4.2 Расцепители тока короткого замыкания при нагрузке любых двух полюсов:
- а) при 0,8 токовой уставки не вызывают размыкание выключателя в течение 0,2 с;
- б) при 1,2 токовой уставки вызывают размыкание выключателя в течение 0,2 с.
- 2.4.3 Расцепители тока короткого замыкания при нагрузке каждого полюса отдельно током 1,3 токовой уставки вызывают размыкание выключателя в течение 0.2 с.
- 2.5 Время-токовые характеристики выключателей приведены на рисунке 3.

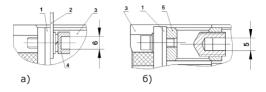

- 1 зона работы теплового максимального расцепителя тока, снятая с нагретого состояния
- 2 зона работы теплового максимального расцепителя тока, снятая с холодного состояния

Рисунок 3 - Время-токовые характеристики выключателей OptiMat E250 (справочные)

- 2.6 Выключатель допускает подвод питания как сверху, так и снизу. Подвод питания снизу не приводит к ухудшению характеристик выключателя.
- 2.7 Конструкция зажимов главных контактов выключателя допускает присоединение медных и алюминиевых проводов и кабелей минимальным сечением 35 и максимальным 120 мм², жестких проводников от 35 до 150 мм².

Момент затяжки винтов крепления внешних проводников – 6 H-M.

Варианты присоединения внешних проводников приведены на рисунке 4.

- a) присоединение шинами или жилами кабеля с кабельным наконечником,
- присоединение кабелем без кабельного наконечника.
 1-вывод выключателя, 2-шина (или кабельный наконечник),
 3-выключатель,
 4-винтовое соединение,
 5-одногнездный зажим

Рисунок 4 – Способ присоединения внешних проводников главной цепи выключателя

Форма и размеры присоединяемой шины максимального сечения указаны на рисунке 5.

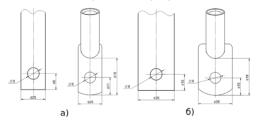


Рисунок 5 - Форма и размеры присоединяемой шины максимального сечения

2.8~ Потребляемая мощность выключателя (E_n) не должна превышать значений, указанных в таблице 4.

Таблица 4

I _n , A	125	160	200	250
En, B∙A	36	45	54	66

2.9 Дополнительные устройства/детали.

Дополнительные устройства/детали заказываются отдельно и устанавливаются потребителем самостоятельно с лицевой стороны выключателя. Отделения для установки дополнительных устройств/деталей изолированы от силовой цепи.

Дополнительные устройства/детали выключателей приведены в таблице 4а.

Таблица 4а

Дополнительные устройства/детали OptiMat E	Общепромышлен- ное исполнение, УХЛЗ	Исполнение с приемкой РС, ОМ4-РЕГ	Исполнение с прием-кой РКО, УХЛЗ-РЕГ
Адаптер на DIN-рейку OptiMat			
Е250-УХЛЗ	100014	273935	273936
Комплект зажимов OptiMat E250- УХЛЗ-Зшт	100017	273941	273942
Крышка клеммная OptiMat E250- УХЛ3-2шт	100023	273953	273954
Расширители полюсов OptiMat E250-УХЛЗ-Зшт	272862	272863	272864
Рукоятка поворотная выносная OptiMat E250-УХЛЗ	100039	236205	242910
Контакт вспомогательный левый OptiMat E-УХЛЗ	100018	273943	273944
Контакт вспомогательный правый OptiMat E-УХЛЗ	100019	273945	273946
Контакт сигнализации вспомогательный OptiMat E-УХЛЗ	100020	273947	273948
Контакт сигнализации комбинированный OptiMat E-УХЛЗ	100021	273949	273950

100024	273955	273956
100034	273957	273958
100031	273959	273960
100035	273961	273962
100032	273963	273964
100036	273965	273966
100033	273967	273968
100041	273969	273970
	100034 100031 100035 100032 100036	100032 273963 100036 273965

2.9.1 Независимый расцепитель обеспечивает выключение выключателя при подаче на выводы его катушки напряжения однофазного переменного или постоянного тока. Независимый расцепитель имеет встроенный контакт, снимающий питание с катушки после срабатывания независимого расцепителя.

Номинальные напряжения независимого расцепителя и его характеристики приведены в таблице 5. Таблица 5

Рабочее напряжение независимого расцепителя, В	12 AC/DC	24 AC/DC	48 AC	110 AC	230 AC	400 AC
Диапазон рабочих напряжений		(0,7-1,1) Ue				
Потребляемая мощность, В-А	Потребляемая мощность, В∙А 200 400					
Режим работы	Кратковременный (импульсный)					
Время отключения, мс		35				

2.9.2 Вспомогательные контакты (вспомогательный контакт, вспомогательный контакт сигнализации, комбинированный контакт сигнализации).

Номинальные рабочие токи (Ie), номинальные напряжения (Ue), приведены в таблице 6.

Таблица 6

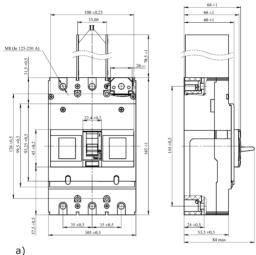
	Номинальный рабочий ток при напряжении питания (${ m I_e}$), А					
Наименование	125- 250 B AC	30 B DC	50 B DC	75 B DC	125 B DC	220 B DC
Вспомогательный контакт (левый/правый)						
Вспомогательный контакт сигнализации	5	5	1	0,75	0,5	0,25
Комбинированный контакт сигнализации						

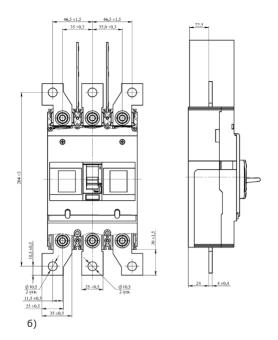
Износостойкость (процент от износостойкости выключателя) – 100 %.

- 2.9.3 Варианты установки дополнительных устройств/деталей приведены в таблице 7.
 - 2.9.4 Расширители полюсов (рисунок 66).

Позволяют осуществлять присоединение шинами шириной до 35 мм.

- 2.10 Выключатели допускают повторное включение:
- немедленно после оперативного отключения при нагрузке номинальным током:
- при отключении токов короткого замыкания электромагнитными расцепителями и токов перегрузки тепловыми расцепителями не менее, чем через 3 минуты.

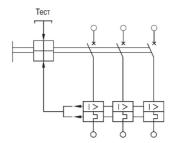

Таблица 7


	таолица 7					
ā	Варианты установки дополнительных устройств/ деталей					
Левая сторона	Вспомогательный контакт (левый); Вспомогательный контакт сигнализации; Комбинированный контакт сигнализации; Независимый расцепитель	Вспомогательный контакт (правый); Независимый расцепитель; Расцепитель минимального напряжения	Правая сторона			

Примечание - С каждой стороны может быть установлено только одно дополнительное устройство/деталь.

З УСТРОЙСТВО И РАБОТА ВЫКЛЮЧАТЕЛЯ

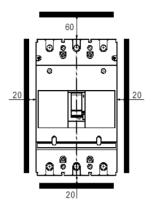
3.1 Габаритные, установочные и присоединительные размеры, и присоединение с расширителями полюсов приведены на рисунке 6.



- а) габаритные, установочные и присоединительные размеры выключателей;
 - б) присоединение с расширителями полюсов.

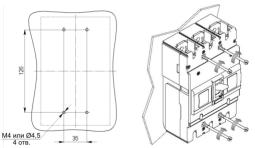
Рисунок 6 – Габаритные, установочные и присоединительные размеры выключателей, и присоединение с расширителями полюсов

Масса выключателя составляет не более 1,4 кг. Электрическая принципиальная схема выключателя приведена на рисунке 7.


Рисунок 7 – Электрическая принципиальная схема выключателя

3.2 Порядок монтажа выключателя.

Выключатели устанавливаются в помещениях, не содержащих взрывоопасные или разъедающие металл и изоляцию газы и пары, токопроводящую или взрывоопасную пыль, а также в местах, защищенных от попадания брызг воды, капель масла и дополнительного нагрева от посторонних источников лучистой энергии.


При монтаже нескольких выключателей расстояние между ними может равняться 0 мм, при этом необходимо установить межполюсные перегородки между выключателями.

Минимальные расстояния от выключателей до заземленных металлических частей распределительного устройства указаны на рисунке 8.

Рисунок 8 – Минимально допустимые расстояния от выключателя до металлических частей

На рисунке 9 приведена схема, в соответствии с которой осуществляется монтаж выключателя на панель.

Рисунок 9 – Расположение отверстий для крепления выключателя на панели

Способы присоединения внешних проводников к выключателю указаны на рисунке 4, форма и размеры присоединяемой шины максимального сечения на рисунке 5.

Монтаж выключателя производится при отсутствии напряжения в главной цепи.

Для монтажа выключателя:

1) выполнить в конструкции, к которой крепится выключатель, отверстия (см. рисунок 9):

2) отвести ручку выключателя в положение «Отключено»:

3) установить и закрепить выключатель.

При наличии отверстий с резьбой в конструкции, к которой крепится выключатель, крепление осуществляется винтами при помощи отвёртки через отверстия в крышке выключателя со стороны его лицевой поверхности.

При отсутствии резьбы в отверстиях конструкции, к которой крепится выключатель, крепление осуществляется винтами при помощи гаек и тех же винтов. Если конструкция выполнена из изоляционного материала или отверстия в ней имеют овальную форму, между гайкой и конструкцией устанавливаются плоские и пружинные шайбы.

Если конструкция выполнена из металла с круглыми отверстиями, устанавливаются только пружинные шайбы:

4) подсоединить внешние проводники к главной цепи выключателя.

Присоединение внешних проводников к зажимам выключателя необходимо выполнить так, чтобы не создавались механические напряжения в конструкции выключателя. Оголённые части присоединяемых с передней стороны внешних проводников необходимо заизолировать (шины на длине не менее 300 мм);

5) вставить межполюсные перегородки Π в пазы (рисунок 6a).

3.3 Подготовка выключателя к работе.

Для проверки работоспособности выключателя необходимо вручную включить выключатель, а затем произвести операцию ручного расцепления механизма путём нажатия на кнопку «Тест».

Убедившись в том, что монтаж выполнен правильно, включите выключатель.

До этого подача напряжения запрещается!

Для включения выключателя, находящегося в расцепленном положении, необходимо произвести операцию взвода, для чего ручку перевести до упора в сторону знака «О», а затем включить выключатель, переведя ручку в сторону знака «І».

Примечание – Допускаются при оперативном переключении отдельные автоматические срабатывания (срывы зацепления).

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Возможность работы выключателей в условиях, отличных от указанных в настоящем руководстве по эксплуатации, технические характеристики выключателей и мероприятия, которые должны выполняться при их эксплуатации в этих условиях, согласовываются между предприятием-изготовителем и потребителем.

Выключатели рассчитаны для работы без ремонта и смены каких-либо частей. При неисправности подлежат замене.

Периодически, примерно через каждые 1000 включений, но не реже одного раза в год, выключатель нужно осматривать. Проверить затяжку крепежа и, при необходимости, затянуть. Осмотр выключателя также нужно производить после каждого отключения тока короткого замыкания.

После каждого отключения тока короткого замыкания рекомендуется произвести 8-10 раз операцию «включение-отключение» без тока.

БЕЗОПАСНОСТИ

5.1 Конструкция выключателей соответствует требованиям ГОСТ 12.2.007.6, во время установки и использования данного изделия следует соблюдать все действующие профильные отраслевые нормы и правила по технике безопасности и эксплуатации электроустановок.

Усилие оперирования на ручке управления не более:

- включение и отключение 25 даН;
- взвод 35 даН.
- 5.2 Пожарная безопасность выключателей обеспечивается как в нормальном, так и в аварийном режимах работы.
- 5.3 Класс защиты выключателя по способу защиты человека от поражения электрическим током по ГОСТ 12.2.007.0 0.

ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 6.1 Условия хранения и транспортирования выключателей и допустимые сроки сохраняемости до ввода в эксплуатацию должны соответствовать указанным в таблице 8.
- 6.2 Транспортирование выключателей должно производиться крытым транспортом. При транспортировании выключателей в контейнерах допускается их перевозка открытым транспортом.
- 6.3 Транспортирование упакованных выключателей должно исключать возможность непосредственного воздействия на них атмосферных осадков и агрессивных сред.

Таблица 8

	транспорт	ие условий ирования в здействия	10вий 50	сроки со- в упаков- еля, годы
Виды поставок	механических факторов по ГОСТ 23216	климатических факторов по ГОСТ 15150	Обозначение условий хранения по ГОСТ 15150	Допустимые сроки со- храняемости в упаков- ке изготовителя, годы
1 Внутри страны (кроме районов Крайнего Севера и труднодоступных по ГОСТ 15846).	С	5 (ОЖ4)	2 (C)	2
2 Внутри страны в районы Крайнего Севера и труднодоступные по ГОСТ 15846.	ж	5 (ОЖ4)	2 (C)	2
3 Экспортные в ма- кро-климатические районы с умерен- ным климатом.	С	5 (ОЖ4)	2 (C)	2

КОМПЛЕКТНОСТЬ

7.1 Выключатель 1 шт.

7.2 Комплект крепежных винтов:

- 2 шт.: Винт М4х60

- Гайка М4 - 2 шт.:

- Соединение винтовое M8x16 - 6 шт.:

- Шайба 4 - 2 шт.:

- Шайба пружинная 4 - 2 шт.

7.3 Межполюсная перегородка - 2 шт.

7.4 Руководство по эксплуатации - 1 шт.

7.5 Инструкция по установке дополнительных устройств/деталей - 1 шт.

Содержание серебра в выключателях на номинальные токи:

- 125, 160 A 2,31747 г; 200, 250 A 3,59367 г.

Отметка по реализованному выключателю ставится в таблице 9.

Таблица 9

Тип	Наименование выключателя	Артикул
	OptiMat E250L125-УХЛЗ	100009
	OptiMat E250L160-УХЛЗ	100010
	OptiMat E250L200-УХЛЗ	100011
	OptiMat E250L250-УХЛЗ	100012
	OptiMat E250N125-УХЛЗ	230652
	OptiMat E250N160-УХЛЗ	230653
	OptiMat E250N200-УХЛ3	230654
	OptiMat E250N250-УХЛЗ	230655
	OptiMat E250H125-УХЛ3	230656
	OptiMat E250H160-УХЛ3	230657
	OptiMat E250H200-УХЛ3	230658
	OptiMat E250H250-УХЛ3	230659
	OptiMat E250L125-OM4-PEF	273913
	OptiMat E250L160-OM4-PEF	273915
	OptiMat E250L200-OM4-PEΓ	273917
	OptiMat E250L250-OM4-PEF	273919
	OptiMat E250N125-OM4-PEF	273921
	OptiMat E250N160-OM4-PEF	273923
	OptiMat E250N200-OM4-PEF	273925
	OptiMat E250N250-OM4-PEF	273927
	OptiMat E250H125-OM4-PEF	236194
	OptiMat E250H160-OM4-PEF	236195
	OptiMat E250H200-OM4-PEF	236196
	OptiMat E250H250-OM4-PEF	236197
	OptiMat E250L125-УХЛ3-РЕГ	273914

OptiMat E250L160-УХЛЗ-РЕГ	273916
OptiMat E250L200-УХЛЗ-РЕГ	273918
OptiMat E250L250-УХЛЗ-РЕГ	273920
OptiMat E250N125-УХЛ3-РЕГ	273922
OptiMat E250N160-УХЛ3-РЕГ	273924
OptiMat E250N200-УХЛЗ-РЕГ	273926
OptiMat E250N250-УХЛЗ-РЕГ	273928
OptiMat E250H125-УХЛ3-РЕГ	242899
OptiMat E250H160-УХЛЗ-РЕГ	242900
OptiMat E250H200-УХЛЗ-РЕГ	273929
OptiMat E250H250-УХЛЗ-РЕГ	242902
OptiMat E250L125-УХЛ3- RR	303444
OptiMat E250L160-УХЛЗ- RR	303445
OptiMat E250L200-УХЛЗ- RR	303446
OptiMat E250L250-УХЛЗ- RR	303447
OptiMat E250N125-УХЛ3- RR	303448
OptiMat E250N160-УХЛЗ- RR	303449
OptiMat E250N200-УХЛЗ- RR	303450
OptiMat E250N250-УХЛЗ- RR	303451
OptiMat E250H125-УХЛ3- RR	303440
OptiMat E250H160-УХЛЗ- RR	303441
OptiMat E250H200-УХЛЗ- RR	303442
OptiMat E250H250-УХЛЗ- RR	303443