ЭЛЕКТРОНАСОСЫ ЦЕНТРОБЕЖНЫЕ ПОГРУЖНЫЕ ТИПА ГНОМ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 28THП.00.000 РЭ

ВНИМАНИЕ!

В случае заклинивания рабочего колеса прочистить его рабочую зону, для чего:

- 1) отключить насос от источника питания;
- 2)снять фильтр

4) снять диафрагму;

3) снять стопорное кольцо;

5) прочистить полость насоса от механических включений;

Сборку производить в обратной последовательности.

Настоящее руководство по эксплуатации (РЭ), совмещенное с паспортом, содержит сведения о конструкции электронасосов типа Гном, МиниГном и 1Гном, их принципе действия, технических характеристиках и предназначено для ознакомления с устройством электронасоса, изучения правил хранения, эксплуатации и технического обслуживания.

К монтажу и эксплуатации электронасосов допускается только квалифицированный персонал, обладающий знанием и опытом по монтажу и обслуживанию насосного оборудования, ознакомленный с конструкцией электронасоса и настоящим РЭ.

Электронасосы не предназначены для использования людьми (включая детей), у которых есть физические, нервные или психические отклонения или недостаток опыта и знаний, за исключением случаев, когда за такими лицами осуществляется надзор или проводится их инструктирование относительно использования данных электронасосов лицом, отвечающим за их безопасность.

Необходимо осуществлять надзор за детьми с целью недопущения их игр с электронасосами.

Электронасосы на предприятии подвергаются 100% контролю на соответствие основным параметрам.

В связи с постоянным усовершенствованием выпускаемой продукции в конструкции отдельных деталей и электронасоса в целом могут быть внесены незначительные изменения, не отраженные в настоящем РЭ.

Содержащиеся в настоящем РЭ указания по технике безопасности, несоблюдение которых может создать опасность для обслуживающего персонала или повлечь нарушение безопасной работы электронасоса, обозначены символами:

- информация или требования, несоблюдение которых может повлечь опасность для персонала

- электроопасность :

- информация по обеспечению безопасной работы или защиты электронасоса

ВНИМАНИЕ

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

Электронасосы центробежные погружные типа Гном (в дальнейшем электронасосы) предназначены для откачивания загрязненных вод температурой до 35 °C, исполнение Тр — до 60 °C плотностью до 1100 кг/м 3 , при содержании твердых механических примесей до 10 % по массе с плотностью твердых частиц не более 2500 кг/м 3 и максимальным размером до 5 мм.

Корпусные детали и рабочие колеса электронасосов серии Гном выполнены из чугуна.

Корпусные детали электронасосов серии 1Гном выполнены из высокопрочной пластмассы, рабочие колеса – из чугуна.

Электронасосы выпускаются в однофазном исполнении на напряжение 220 В и в трехфазном исполнении на напряжение 380 В частотой 50 Гц.

Электронасосы не предназначены для эксплуатации в помещениях, содержащих взрывоопасные смеси, или с содержанием горючей пыли.

Электронасосы относятся к изделиям общего назначения (OH), непрерывного длительного применения, восстанавливаемые, обслуживаемые, ремонтируемые обезличенным способом по ГОСТ 27.003-2016.

Климатическое исполнение У* ГОСТ 15150-69, предназначенные для работы в воде. Режим работы продолжительный.

Условное обозначение электронасоса Гном в трехфазном исполнении при заказе должно быть:

где 1 – торговое наименование;

2 – номинальная подача, м³/ч;

3 – номинальный напор, м;

4 – Тр – для воды температурой до плюс 60 °C;

без обозначения – для воды температурой до плюс 35 °C;

5 – номинальное напряжение, В.

Условное обозначение электронасоса Гном в однофазном исполнении при заказе должно быть:

где 1 – торговое наименование;

2 – номинальная подача, м³/ч;

3 – номинальный напор, м;

4 – Д – с поплавковым выключателем (с датчиком уровня);

без обозначения – без поплавкового выключателя (без датчика уровня);

5 – номинальное напряжение, В.

Условное обозначение электронасоса 1Гном в трехфазном исполнении при заказе должно быть:

Электронасос <u>1Гном 10- 10, 380 В ТУ 3631- 025 -05747979-2003,</u>

где 1 – торговое наименование;

2 – номинальная подача, м 3 /ч;

3 – номинальный напор, м;

4 – номинальное напряжение, В.

Условное обозначение электронасоса 1Гном в однофазном исполнении при заказе должно быть:

где 1 – торговое наименование;

2 - номинальная подача, м 3 /ч;

3 – номинальный напор, м;

 $4 - \Pi - c$ поплавковым выключателем (с датчиком уровня);

без обозначения – без поплавкового выключателя (без датчика уровня);

5 – номинальное напряжение, В.

Условное обозначение электронасоса Мини Гном в однофазном исполнении при заказе должно быть:

где 1 – торговое наименование;

 $\dot{2}$ – номинальная подача, м³/ч;

3 – номинальный напор, м;

4 – Д – с поплавковым выключателем (с датчиком уровня);

без обозначения – без поплавкового выключателя (без датчика уровня);

5 – номинальное напряжение, В.

Электронасос соответствует требованиям Технических регламентов Таможенного союза:

Сертификат о соответствии ТР ТС 020/2011: № EAЭC RU.C-RU.AЯ45.B.00159/23. Срок действия сертификата с 19.12.2023 по 18.12.2028.

Сертификат о соответствии ТР ТС 010/2011: № EAЭC RU C-RU.AЯ45.B.00157/23. Срок действия сертификата с 15.12.2023 по 14.12.2028.

Декларация о соответствии TP EAЭC 037/2016: № EAЭC N RU Д-RU.PA01.B.27889/25. Срок действия декларации с 21.01.2025 по 20.01.2030.

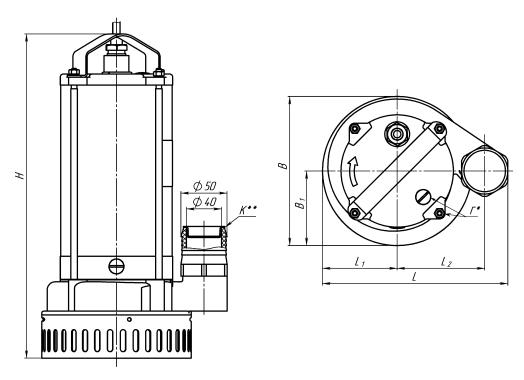
1.2 Технические характеристики

1.2.1 Основные технические характеристики электронасосов на номинальном режиме работы указаны в таблице 1.

Таблица 1

Типоразмер электронасоса	Параметры энергопи- тания	Ток, А	Номинальная мощность электродвигателя, кВт	Подача, м³/ч (л/с)	На- пор, м	Масса, кг, без шнура пита- ния, не более
Мини Гном 7-7 Мини Гном 7-7Д				7 (1,9)	7	15,0
1Мини Гном 7-7 1Мини Гном 7-7Д				() ,		10,0
Гном 10-6 Гном 10-6Д		3,0	0,6	10 (2,78)	6	15,0
1Гном 10-6 1Гном 10-6Д	1 ~ 220B	,	,	, ,		10,0
Гном 6-10 Гном 6-10Д				6 (1,66)	10	15,0
1Гном 6-10 1Гном 6-10Д				0 (1,00)		10,0
Гном 10-10 Гном 10-10Д		0.0	1.1			16,0
1Гном 10-10 1Гном 10-10Д		8,0	1,1	10 (2,78)	10	11,0
Гном 10-10		2,0	0,75			15,0
Гном 10-10Тр 1Гном 10-10	3 ~ 380B	2,3	1,1			16,0 10,5
Гном 16-16 Гном 16-16Д	1 ~ 220B	11,0		16 (4,44)	16	28,0
Гном 16-16 Гном 16-16Тр	3 ~380B	3,5	2,2	10 (4,44)	10	24,0

Примечание - Допустимое отклонение напора минус 10%, ток +15 %, отклонение напряжения сети питания +10% минус 5% и частоты тока ± 2 %.


- 1.2.2 Габаритные и присоединительные размеры электронасосов приведены на рисунке 1.
 - 1.2.3 Напорная характеристика электронасосов приведена на рисунке 2.
- 1.2.4 Показатели надежности электронасосов указаны в разделе 4, при этом:
- критерием отказа электронасосов является снижение сопротивления изоляции менее 1,0 МОм в холодном состоянии и менее 0,5 МОм при рабочей температуре;
- критерием предельного состояния электронасосов является нарушение электрической прочности изоляции.

1.2.5 Показатели безопасности:

- назначенный срок службы 10 лет. (Назначенный срок службы обеспечивается при необходимости заменой таких деталей, как подшипников, торцового (механического) уплотнения, манжеты, шнура питания, резиновых колец и уплотнителей);
 - назначенный срок хранения 5 лет;
 - назначенный ресурс 12000 часов.

По достижении электронасосом назначенного срока службы при сохранении технико-экономических показателей может быть принято решение о продолжении эксплуатации.

Обоснование безопасности размещено в электронном виде на сайте предприятия-изготовителя: https://www.hms-livgidromash.ru/.

Типоразмер	Размеры, в мм					
электронасоса	Н	L	L ₁	L ₂	В	B ₁
1Мини Гном 7-7,220В 1Мини Гном 7-7Д,220В 1Гном 10-6, 220В 1Гном 6-10,220В		220	90		180	90
Мини Гном 7-7,220 В Мини Гном 7-7Д, 220В Гном 10-6, 220В Гном 10-6Д, 220В Гном 6-10, 220В Гном 6-10Д, 220В Гном 10-10, 380В	360	210	81	95	162	81
Гном 10-10Д, 220В Гном 10-10, 220В Гном 10-10Тр, 380В	380					
1Гном 10-10, 220В						
1Гном 10-6Д, 220В 1Гном 6-10Д, 220В	350	220				90
1Гном 10-10Д, 220В 1Гном 10-10, 380В	370		90		180	
Гном 16-16, 380B Гном 16-16 Тр, 380B	420	245		115		85
Гном 16-16, 220В Гном 16-16Д, 220В	450	240		115		65

Рисунок 1- Габаритные и присоединительные размеры электронасосов

^{*}Гарантийное пломбирование
**Консервационное пломбирование

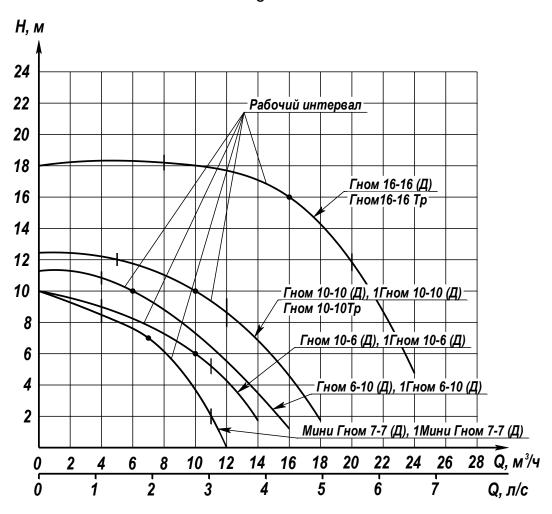


Рисунок 2 – Характеристика электронасосов

1.3 Состав изделия

1.3.1 В комплект поставки входит:

- Электронасос со шнуром питания 10 метров (трехфазное исполнение) - 1 шт.

или

- -Электронасос с пусковым устройством и шнуром питания 10 метров (однофазное исполнение) 1шт.
- Руководство по эксплуатации

- 1 шт.

- Упаковка -1 шт.

Комплект монтажных частей

- станция управления и защиты электронасоса*

- 1 шт.

- поплавковый выключатель с кабелем длиной 10 метров*

- 1 шт.

^{*}Поставка за отдельную плату для электронасосов только на напряжение 380 В. Для поплавкового выключателя может оговариваться другая длина кабеля.

1.4 Устройство и работа

Электронасосы представляют собой переносной моноблок, состоящий из электродвигателя и насосной части.

Устройство электронасосов и взаиморасположение составных частей в соответствии с рисунками 3 и 4.

Насосная часть состоит из рабочего колеса, закрепленного на валу электродвигателя гайкой, корпуса насоса, кольца. К корпусу насоса крепится легкосъемный фильтр.

Приводом электронасосов является трехфазный асинхронный электродвигатель или однофазный конденсаторный асинхронный электродвигатель. Электродвигатель состоит из ротора, статора, щита подшипника и крышки. Охлаждение электродвигателя осуществляется за счет теплоотдачи в окружающую среду (воду).

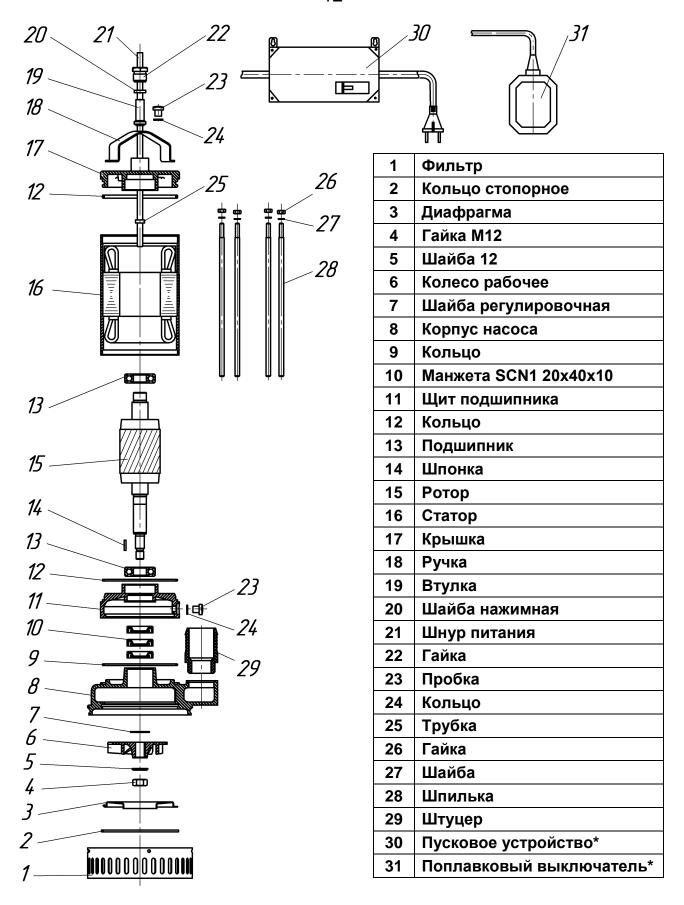
Синхронная частота вращения ротора 3000 об/мин. Направление вращения – против часовой стрелки, если смотреть со стороны насосной части.

Шнур питания электронасоса с трехфазным электродвигателем имеет свободный конец для подключения к автоматическому выключателю. Заземляющая жила шнура питания подключена к внутренней стороне крышки.

Запуск электронасоса с приводом от однофазного электродвигателя осуществляется посредством пускового устройства, смонтированного на шнуре питания. Пусковое устройство имеет рабочий конденсатор, автоматический выключатель для защиты электродвигателя от перегрузки и армированный шнур питания для подключения к однофазной сети.

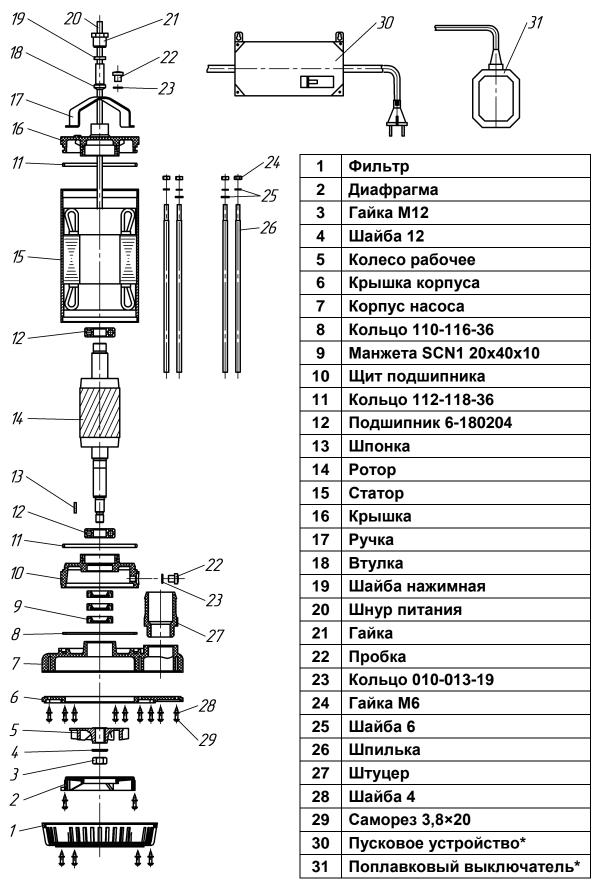
Нижний подшипник устанавливается в щите подшипника на герметик.

Крышка и щит подшипника уплотняются резиновыми кольцами.


В щите подшипника имеется пробка для заливки масла.

ВНИМАНИЕ ПРОБКУ, УСТАНОВЛЕННУЮ В КРЫШКЕ, НЕ ОТКРУЧИВАТЬ.

Она служит для технологических целей при сборке электронасоса.


Внутренняя полость электродвигателя со стороны выступающего конца вала отделена от проточной части масляной камерой и манжетами, запрессованными в корпусе насоса и в щите подшипника. Полость между манжетами заполняется литолом.

Электронасосы в однофазном исполнении изготавливаются со встроенным поплавковым выключателем (датчиком уровня) и без поплавкового выключателя.

*Для насосов в однофазном исполнении

Рисунок 3 - Устройство электронасосов Мини Гном и Гном.

*Для насосов в однофазном исполнении

Рисунок 4 - Устройство электронасосов 1Гном.

1.5 Маркировка и пломбирование

- 1.5.1 На электронасосе приведены следующие данные:
 - страна-изготовитель;
 - наименование предприятия-изготовителя;
 - единый знак обращения на рынке;
 - условное обозначение электронасоса;
 - номинальное напряжение, В;
 - число фаз;
 - род тока;
 - номинальная частота тока, Гц;
 - номинальная мощность электродвигателя, кВт;
 - номинальный ток, А;
 - частота вращения ротора, об/мин;
 - максимальный напор, м;
 - максимальная подача, м³/ч ;
 - степень защиты;
 - максимальная рабочая глубина погружения, м;
 - максимальная температура жидкости, °C;
 - номер электронасоса;
 - месяц и год изготовления;
 - клеймо ОТК.
- 1.5.2 Электронасос опломбирован.

Места нанесения гарантийного и консервационного пломбирования указаны на рисунке 1.

1.5.3 Стрелка на крышке обозначает направление вращения ротора.

1.6 Упаковка

Электронасосы после сборки и испытаний упакованы в тару, обеспечивающую достаточную устойчивость при транспортировании.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

ВНИМАНИЕ

ПОДКЛЮЧЕНИЕ ЭЛЕКТРОНАСОСА В ТРЕХФАЗНОМ ИСПОЛНЕНИИ ДОПУСКАЕТСЯ ТОЛЬКО ЧЕРЕЗ АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ С КОМБИНИ-РОВАННЫМ ТЕРМОМАГНИТНЫМ РАСЦЕПИТЕЛЕМ ДЛЯ ЗАПУСКА И ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЯ.

согласно таблице 2.

2.1.1 Номинальные токи электродвигателей указаны в таблице 2.

Таблица 2

Типоразмер электронасоса	Номинальный ток элек- тродвигателя, In A
Гном 10-10, 380 В	1,8
1Гном 10-10, 380 В Гном 10-10Тр, 380 В	2,6
Гном 16-16, 380 В Гном 16-16 Тр, 380 В	4,6

2.1.2 Схема подключения электронасосов через автоматический выключатель приведена на рисунке 5.

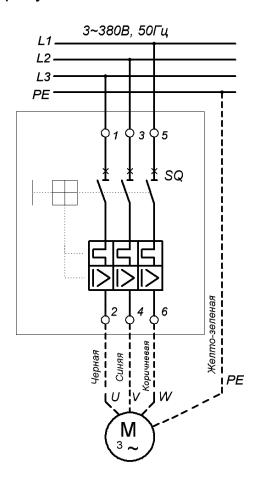


Рисунок 5 – Схема подключения

ВНИМАНИЕ

ЭЛЕКТРОНАСОС ПРИ ЭКСПЛУАТАЦИИ ДОЛЖЕН БЫТЬ ПОЛНОСТЬЮ ПОГРУЖЕН В ПЕРЕКАЧИВАЕМУЮ ЖИД-КОСТЬ.

ВНИМАНИЕ

НЕ ДОПУСКАЕТСЯ ДЛИТЕЛЬНАЯ РАБОТА ЭЛЕКТРО-НАСОСА С ПОЛНОСТЬЮ ПЕРЕКРЫТОЙ ПОДАЧЕЙ.

ЗАПРЕЩАЕТСЯ ПЕРЕКАЧИВАТЬ ВЗРЫВООПАСНЫЕ И ЛЕГКОВОСПЛАМЕНЯЮЩИЕСЯ ЖИДКОСТИ ИЛИ АГРЕС-СИВНЫЕ ХИМИЧЕСКИ ВЕЩЕСТВА, ТАКИЕ КАК КИСЛОТА И ЩЕЛОЧЬ.

ВО ВРЕМЯ РАБОТЫ ЭЛЕКТРОНАСОСА ЕГО РЕМОНТ И ОБСЛУЖИВАНИЕ НЕ ДОПУСКАЮТСЯ.

ЗАПРЕЩАЕТСЯ ПЕРЕНОС, ПОДЪЕМ И ОПУСКАНИЕ ЭЛЕК-ТРОНАСОСА ЗА ШНУР ПИТАНИЯ. ЭЛЕКТРОНАСОС ПЕРЕНОСИТЬ ТОЛЬКО ЗА РУЧКУ.

ЗАПРЕЩАЕТСЯ ЭКСПЛУАТАЦИЯ ЭЛЕКТРОНАСОСА ПРИ НАХОЖДЕНИИ В КОТЛОВАНЕ/РЕЗЕРВУАРЕ ЛЮДЕЙ.

ЗАПРЕЩАЕТСЯ ЭКСПЛУАТАЦИЯ ЭЛЕКТРОНАСОСА С ПОВРЕЖДЕННЫМ ШНУРОМ ПИТАНИЯ.

При повреждении шнура питания во избежание опасности его должен заменить предприятие-изготовитель или сервисный центр.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ КАСАТЬСЯ ВКЛЮЧЕННОГО В ЭЛЕКТРОСЕТЬ ЭЛЕКТРОНАСОСА.

Максимальная глубина погружения – 7 м.

Максимально допустимое внешнее давление жидкости -0,1 МПа (1 кгс/см^2) .

2.2. Меры безопасности при подготовке к работе

ВНИМАНИЕ ПОТРЕБИТЕЛЬ НЕСЕТ ОТВЕТСТВЕННОСТЬ ЗА ПРОВЕРКУ СОСТОЯНИЯ ПОДЪЕМНОГО УСТРОЙСТВА. ГРУЗОПОДЪЕМНОСТЬ ПОДЪЕМНОГО УСТРОЙСТВА ДОЛЖНА ПРЕВЫШАТЬ МАССУ ЭЛЕКТРОНАСОСА В ЧЕТЫРЕ РАЗА.

- 2.2.1 Для монтажа, пуска или технического обслуживания электронасоса специальный инструмент не требуется
 - 2.2.2 Предприятие-изготовитель не несет ответственность за неисправности и повреждения, произошедшие из-за несоблюдения требований настоящего РЭ.
- 2.2.3 При вводе электронасоса в эксплуатацию (подготовке к работе, монтаже), эксплуатации и обслуживании необходимо соблюдать меры безопасности, руководствуясь положениями, изложенными в «Правилах устройства электроустановок», «Правилах технической эксплуатации электроустановок потребителями» и «Правилах техники безопасности при эксплуатации электроустановок потребителем».

2.3 Подготовка к работе

2.3.1 Пример установки электронасоса приведен на рисунке 6

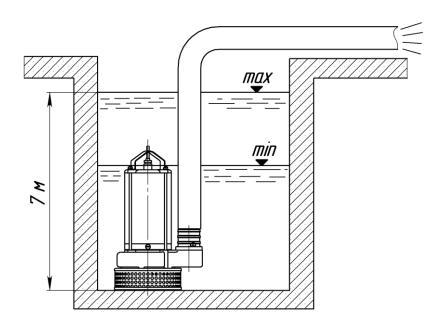


Рисунок 6 - Схема установки электронасоса

- 2.3.2 Перед началом работ провести внешний осмотр электронасоса. Механические повреждения корпусных деталей и токоподводящего кабеля не допускаются.
- 2.3.3 Проверить сопротивление изоляции системы кабель-двигатель. Сопротивление изоляции обмотки электронасоса относительно корпуса и между обмотками должно быть не менее 1,0 МОм в холодном состоянии и не менее 0,5 МОм при рабочей температуре.
- 2.3.4 Проверить наличие масла в масляной камере (визуально). Электронасос положить горизонтально пробкой вверх, выкрутив ее из щита подшипника. При повороте электронасоса вокруг оси на 30°...45° масло должно вытекать через заливное отверстие.
- 2.3.5 Электронасос должен быть заземлен. Для подключения заземления предназначен провод желто-зеленого цвета.
 - 2.3.6 Снять с патрубка заглушку.

Надеть гибкий шланг и закрепить хомутами в двух местах.

Внутренний диаметр шланга должен соответствовать размеру напорного патрубка электронасоса.

При эксплуатации необходимо обеспечить свободный слив из шланга и исключить перегибы.

- 2.3.7 Установка запорной и обратной арматуры не требуется.
- 2.3.8 Проверить соответствие напряжения в сети напряжению, указанному на табличке электронасоса.
 - 2.3.9 При опускании электронасоса в котлован, пользоваться тросом.

Нижняя часть электронасоса (дно) имеет достаточную площадь для обеспечения использования его без опрокидывания, падения или неожиданного перемещения.

Если дно котлована песчаное или илистое, электронасос установить на ровную и прочную подложку или подвесить его так, чтобы он располагался несколько выше дна. Допустимый наклон опорной поверхности, исключающий опрокидывание, не более 10°.

- 2.3.10 Погрузить электронасос в перекачиваемую жидкость. Максимальная откачка жидкости обеспечивается при вертикальной установке электронасоса.
- 2.3.11 Для электронасосов в трехфазном исполнении проверить правильность направления вращения ротора, для чего сделать два пробных пуска электронасоса, меняя при этом две любые фазы. Правильному направлению вращения соответствует больший напор.

2.4 Меры безопасности при работе

ЗАПРЕЩАЕТСЯ ВЫПОЛНЯТЬ КАКИЕ-ЛИБО РАБОТЫ, ПОКА НЕ БУДЕТ ОТКЛЮЧЕНО ЭЛЕКТРОПИТАНИЕ.

ВНИМАНИЕ

НЕ ДОПУСКАЕТСЯ ЭКСПЛУАТАЦИЯ ЭЛЕКТРОНАСОСА ПРИ НАЛИЧИИ ЛЬДА В ПРОТОЧНОЙ КАМЕРЕ.

ВНИМАНИЕ

ЗАПРЕЩАЕТСЯ ПОЛЬЗОВАТЬСЯ ПАЯЛЬНОЙ ЛАМПОЙ ДЛЯ ОТТАИВАНИЯ ЛЬДА В ЭЛЕКТРОНАСОСЕ.

Этим можно повредить резиновые детали.

2.4.1 Шнур питания должен быть защищен от механических повреждений.

В случае повреждения шнура питания должна быть обеспечена безопасность обслуживающего персонала.

2.4.2 Электронасос, достигший предельного состояния и не подлежащий восстановлению, использовать в дальнейшем не допускается.

2.5 Порядок работы

- 2.5.1 По виду установки электронасос погружной, соответственно на рабочем месте обслуживающий персонал не подвергается воздействию шума и вибрации.
- 2.5.2 Эксплуатация электронасоса допускается в пределах всей напорной характеристики. Рабочий интервал на характеристике определяет наиболее экономичный режим работы электронасоса.
- 2.5.3 Пуск электронасоса осуществляется с места его установки или дистанционно.
- 2.5.4 Устройство останова смонтировать в непосредственной близости к электронасосу, независимо от наличия дистанционного способа останова.

Данное устройство также выполняет функцию ручного аварийного отключения.

2.5.5 В случае полного или частичного прекращения энергоснабжения электрическая схема подключения электронасоса должна исключить возможность самопроизвольного пуска при его восстановлении.

Данное требование не относится к повторному пуску электронасосов, работающих в автоматическом режиме, если повторный пуск после остановки предусмотрен этим режимом.

- 2.5.6 Нарушение (неисправность или повреждение) в схеме подключения электронасоса не должно приводить к возникновению опасных ситуаций, включая самопроизвольный пуск и невыполнение уже выданной команды на остановку.
- 2.5.7 Расконсервация электронасоса перед началом эксплуатации не требуется.
- 2.5.8 Электронасос включается в работу непосредственно после его погружения в воду и может работать в погруженном состоянии длительное время.

2.5.9 В электронасосах с однофазным двигателем при коротком замыкании или перегрузке срабатывает автоматический выключатель, который отключает электронасос от сети.

Для повторного запуска электронасоса включить автоматический выключатель.

- 2.5.10 Контроль параметров в процессе эксплуатации электронасоса не требуется.
- 2.5.11 При появлении во время работы электронасоса посторонних шумов, нехарактерных для нормального режима работы, а также если внезапно прекратилась подача и электронасос не работает, отключить его от сети, поднять на поверхность, выяснить неисправность и ее причины. Перечень возможных неисправностей приведен в таблице 3.

После устранения неисправности электронасос можно вновь включать в сеть.

2.5.12 После демонтажа внутри электронасоса остается незначительное количество рабочей жидкости, опасность выброса которой при разборке исключается.

2.6 Возможные неисправности и способы их устранения

Перечень возможных неисправностей и критических отказов приведены в таблицах 3 и 4.

Таблица 3 - Возможные неисправности

Возможные	Вероятная причина	Способ устранения
неисправности		
1. Электронасос	Отсутствие напряжения или	Проверить наличие
не запускается.	низкое напряжение в сети.	напряжения в сети.
	Повреждение шнура	Отключить электронасос,
	питания.	обратиться в сервисный
		центр для замены шнура
		питания.
2. При включении	Заклинивание рабочего	Прочистить зону рабочего
электронасос мгновенно	колеса.	колеса.
отключается, срабаты-		
вает защита сети		
3. Недостаточная произ-	Засорение проточной части	Прочистить проточную
водительность электро-	электронасоса	часть электронасоса
насоса		

Таблица 4 - Критические отказы

Критические отказы	Вероятная причина	Способ устранения
1. При включении	Короткое замыкание в цепи	
электронасос мгновенно	электродвигателя.	
отключается,		
срабатывает защита		
сети		
2. Электронасос	Отказ поплавкового	_
не запускается.	выключателя	Отключить электронасос,
3. Недостаточная произ-	Разрушение рабочего	обратиться в сервисный
водительность электро-	колеса, корпуса насоса	центр для ремонта.
насоса		
4. Большая вибрация и	Разрушение подшипника	
шум	качения	
	Разрушение рабочего	
	колеса	
	Загрязнения/волокна	Прочистить проточную
	в области рабочего колеса,	часть электронасоса
	затрудненное вращение	

2.7 Перечень критических отказов в связи с ошибочными действиями персонала

Описание критических отказов электронасоса в связи с ошибочными действиями персонала и действия в случае аварии приведены в таблице 5.

Таблица 5 - Перечень критических отказов в связи с ошибочными действиями персонала

Критические отказы	Возможные ошибочные действия персонала, приведшие к аварии	Действия персонала в случае аварии
Облом конца вала с рабочим колесом	Неправильное подключение электронасоса как следствие неправильное направление вращения.	
Остановка электро- насоса по причине:		
неисправна обмотка двигателя	1) эксплуатация электронасо- са без полного погружения в жидкость - выход его из строя из-за перегрева	Отключить электронасос,
	2) Подключение насоса к более высокому напряжению, чем указано на табличке как следствие – выход его из строя по причине пробоя изоляции	обратиться в сервисный центр для ремонта.
попадания воды в двигатель	1) Перенос, подъем и опускание электронасоса за шнур питания.	
	2) Повреждение шнура питания.	

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

ПЕРЕД НАЧАЛОМ РАБОТ ПРЕДВАРИТЕЛЬНО ВЫКЛЮЧИТЬ НАПРЯЖЕНИЕ ПИТАНИЯ И ПРИНЯТЬ ВСЕ МЕРЫ, ИСКЛЮЧА-ЮЩИЕ ВОЗМОЖНОСТЬ ЕГО СЛУЧАЙНОГО ВКЛЮЧЕНИЯ.

ВСЕ ВРАЩАЮЩИЕСЯ ДЕТАЛИ ДОЛЖНЫ БЫТЬ НЕПОДВИЖНЫ.

- 3.1.1 Техническое обслуживание электронасоса производится только квалифицированными специалистами с соблюдением правил техники безопасности.
- 3.1.2 После работы электронасоса в жидкости с большим содержанием механических примесей его необходимо на непродолжительное время запустить в чистой воде с целью очистки проточной части.
- 3.1.3 Персонал, занятый техническим обслуживанием, должен иметь надлежащую квалификацию для проведения этих работ.
- 3.1.4 При интенсивной эксплуатации электронасоса не реже одного раза в месяц проверять:
- уровень масла и отсутствие воды в масле и, при необходимости, производить его замену (если в масле наблюдается вода необходимо найти причину и устранить ее);
- отсутствие перегибов на шнуре питания и механических повреждений на электронасосе;
- производить замеры сопротивления изоляции системы кабельдвигатель, которое должно быть не менее 0,5 МОм при рабочей температуре;
- 3.1.5 При длительных перерывах в эксплуатации (более трех месяцев) проверять легкость вращения вала от руки.

3.2 Замена масла

- 3.2.1 Не реже одного раза в месяц или через каждые 200 250 часов работы производить замену масла.
- 3.2.2 Установить электронасос на ровной горизонтальной поверхности согласно рисунку 7, в щите подшипника открутить пробку.
- 3.2.3 Слить отработанное масло, затем залить в отверстие масло индустриальное И-20А или И-40А до заполнения в количестве 300 мл. При повороте электронасоса вокруг оси на 30°...45° слить небольшое количество масла.
 - 3.2.4 Закрутить пробку.

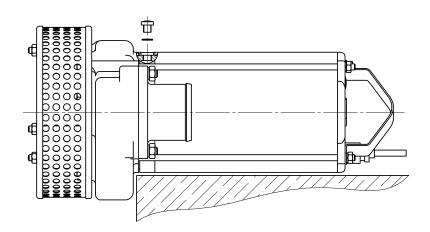


Рисунок 7 – Схема заливки масла

3.3 Консервация

3.3.1 Расконсервация электронасоса происходит в процессе эксплуатации.

Дата	Наименование	Срок действия,	Должность,
	работы	годы	фамилия, подпись
	Произведена консервация ингибитором H-M-1	2 года	
	по варианту защиты ВЗ-12		

Примечание - Электронасосы типа 1Гном консервации не подлежат.

5 ХРАНЕНИЕ

- 5.1 Перед постановкой на длительное хранение (*более трех месяцев*) электронасос очистить от загрязнений, промыть в чистой воде, просушить, защитить от воздействия влаги и тепла
- 5.2 Электронасос должен храниться в закрытых помещениях при отсутствии воздействия кислот, щелочей, бензина, растворителей и т. д.
- 5.3 Температура хранения от плюс 40 °C до минус 50 °C. Относительная влажность -75%.
- 5.4 Срок хранения 2 года. При хранении электронасоса свыше двух лет (по истечении срока действия консервации) следует произвести переконсервацию.
- 5.5 Для консервации применяется ингибированный (замедляющий коррозию) водный раствор следующего состава:

Нитрат натрия	20%
Сода	1%
кальцинированная	1 70
Вода	79%

6 ТРАНСПОРТИРОВАНИЕ

- 6.1 Электронасосы могут транспортироваться любым видом транспорта при соблюдении правил перевозки, установленных для каждого вида транспорта. При транспортировании электронасосов открытым транспортом они должны быть накрыты брезентом.
- 6.2 При транспортировании электронасосов без упаковки должна быть исключена возможность их соударения между собой.
 - 6.3 Условия транспортирования:
- в части воздействия климатических ВВФ 4 (Ж2) по ГОСТ 15150-69 (навесы в макроклиматических районах с умеренным и холодным климатом в условно чистой атмосфере);
- в части воздействия механических ВВФ лёгкие (Л) по ГОСТ 23216-78 (перевозки без перегрузок или с общим числом перегрузок не более двух железнодорожным и автомобильным транспортом).

Электронасосы могут транспортироваться при температуре от плюс 50 °C до минус 50 °C.

- 6.4 При погрузке и выгрузке электронасосов не допускать резких толчков, падений с транспортного средства, ударов между собой.
- 6.5 При подъёме электронасоса использовать исключительно ручку, ни в коем случае не поднимать за шнур питания, поплавковый выключатель или гибкий напорный рукав/трубу.
- 6.6 Строповка электронасоса должна осуществляться согласно рисунку 8.

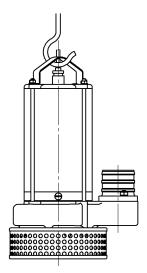


Рисунок 8 Схема строповки

7 УТИЛИЗАЦИЯ

- 7.1 Электронасос не содержит веществ, представляющих опасность для жизни, здоровья людей и окружающей среды.
- 7.2 Электронасос, достигший предельного состояния и не подлежащий восстановлению, использовать в дальнейшем не допускается.
- 7.3 Для предотвращения использования электронасоса после прекращения его эксплуатации, он должен быть разобран и утилизирован по усмотрению потребителя.
 - 7.4 Конструкция электронасосов не содержит драгоценных материалов. Сведения о содержании цветных металлов указаны в таблице 6.

Таблица 6 - Сведения о содержании цветных металлов

Наименование	№ рисунка, позиция	Типоразмер электронасоса	Масса, кг
Сплав на основе меди группы II, класса А, сорта 1а ГОСТ Р 54564-2022	Рисунок 3, поз. 16 Рисунок 4, поз. 15	МиниГном 7-7 Гном 10-10, Гном 6-10, Гном 10-6	
10011 04004 2022		Гном 16-16	1,7
Сплав на основе алюминия группы XII, класса Г, сорта 1 ГОСТ Р 54564-2022	Рисунок 3, поз. 15 Рисунок 4, поз. 14	МиниГном 7-7 Гном 10-10, Гном 6-10, Гном 10-6	0,33
10011 34304-2022		Гном 16-16	0,4