

КОЛЛЕКТОР С РЕГУЛИРУЮЩИМИ ВЕНТИЛЯМИ

Okseler

ТЕХНИЧЕСКИЙ ПАСПОРТ

000.375.000 ПС

1. Наименование, область применения и номенклатура

Коллекторы с регулирующими вентилями предназначены для распределения потока транспортируемой среды по потребителям.

Могут использоваться на трубопроводах систем холодного (в том числе питьевого) и горячего водоснабжения, отопления, а также на технологических трубопроводах, транспортирующих жидкости, не агрессивные к материалам элементов коллекторов. В качестве рабочей среды может использоваться холодная и горячая вода, растворы на основе гликоля с максимально допустимой концентрацией 50%, сжатый воздух, а также прочие жидкости, неагрессивные к материалу коллектора. Коллекторы с регулирующими вентилями позволяют сбалансировать расход по потребителям.

Номенклатура изделий приведена в таблице 1.

Таблица 1. Номенклатура изделий

№ п/п	Н	Артикул					
	Коллектор латунный с регулирующими вентилями						
1	G3/4	Oks00375					
2	G3/4	Oks00376					
3	G3/4" x G1/2" 4 выхода Oks00377						
4	1" BP X 1/2" HP 2 выхода Oks00378						
5	1" BP X 1/2" HP 3 выхода Oks00379						
6	1" BP X 1/2" HP 4 выхода Oks00380						

На рисунке 1 и в таблице 2 показаны и описаны основные элементы коллектора.

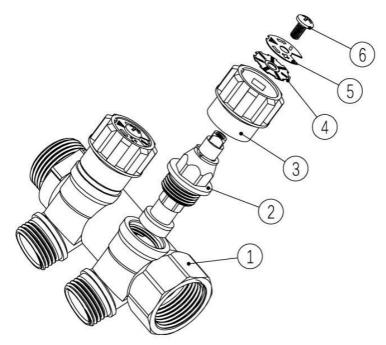


Рис.1 – Коллектор с регулирующими вентилями

Регулировка расхода через вентиль производится вращением ручки (от 0 до 3,5 оборотов).

При поставке выходные патрубки коллектора закрыты защитными колпачками.

Nº Материал Наименование поз Латунь CW617N с покрытием никель 1 Корпус Вентиль 2 Латунь CW617N Ручка регулировочная 3 ABS Пластик 4 Прокладка Αl Диск синий, с обратной 5 Αl стороны красный 6 Сталь Винт

Таблица 2. Основные элементы коллектора

2. Технические характеристики

В таблице 3 указаны технические характеристики коллектора латунного с регулирующими вентилями OKSELER.

N₀	Характеристика	Наименование и единицы измерения	Показатель		
1	Номинальное давление	бар	10		
2	Пробное давление	бар	15		
3	Максимальная температура рабочей среды	°C	110		
4	Максимальная кратковременно допустимая температура рабочей среды	°C	110		
5	Максимальная температура окружающего воздуха	°C	65		
6	Максимальная относительная влажность окружающего воздуха	%	80		
7	Акустическая группа по ГОСТ 19681-2016	-	1		
8	Средний полный ресурс	цикл	8000		
9	Средняя наработка на отказ	цикл	4000		
10	Допустимый момент затяжки при монтаже коллекторов	Нм	33		
11	Допустимый момент затяжки при монтаже накидных гаек фитингов	нтаже накидных гаек НМ фитингов			
12	Допустимый момент, прикладываемый к ручке вентиля	Нм	7		
13	Ремонтопригодность	-	Неремонтопригоден		

Регулирование расхода через вентиль происходит путем вращения регулировочной ручки, что изменяет положение золотника и пропускную способность вентиля. В таблице 4 приведена пропускная способность вентиля в зависимости от количества поворотов ручки.

Таблица 4. Пропускная способность клапана

Количество оборотов открытия	Пропускная способность (Kv), м³/ч
1/4 оборота	0,25
1/2 оборота	0,38
3/4 оборота	0,57
1 оборот	0,81
1,5 оборота	1,72
2 оборота	1,94
3,5 оборота	2,5

3. Габаритные размеры

На рисунке 2 и в таблице 5 приведены основные размеры и вес коллекторов с регулирующими вентилями OKSELER.

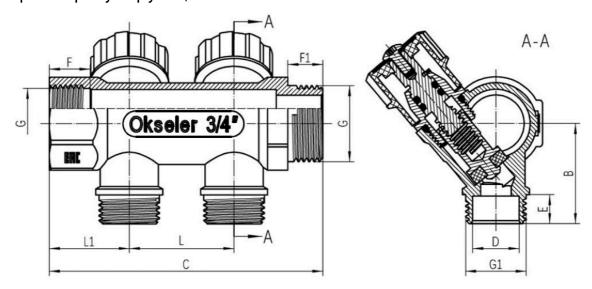


Рис.2 – Размеры коллектора с регулирующими вентилями

T											1	ı
Артикул	G	G1	L, MM	L1, MM	В, мм	С, мм	D, MM	Е, мм	F, MM	F1, MM	Кол-во выходов	Вес, грамм
Oks00375	3/4	1/2	36	27,5	34,5	94	16	10	14	12	2	358
Oks00376	3/4	1/2	36	27,5	34,5	130	16	10	14	12	3	498
Oks00377	3/4	1/2	36	27,5	34,5	166	16	10	14	12	4	676
Oks00378	1	1/2	36	28	41	97	16	10	16	14	2	468
Oks00379	1	1/2	36	28	41	133	16	10	16	14	3	607
Oks00380	1	1/2	36	28	41	169	16	10	16	14	4	726

Таблица 5. Размеры и вес коллекторов

4. Указания по монтажу

Монтаж и запуск в эксплуатацию должен производиться специализированной монтажной организацией.

Коллекторы должны монтироваться при температуре в помещении выше 0°С. К коллекторам могут присоединяться стальные, полимерные, металлополимерные и медные трубопроводы.

При монтаже необходимо соблюдать следующие указания:

• Коллекторы могут монтироваться в любом монтажном положении, при этом необходимо обеспечить беспрепятственный доступ к ручкам управления. При вертикальной установке коллекторов автоматический воздухоотводчик также устанавливается вертикально.

- Соединители для коллекторов следует использовать в соответствии с рекомендациями СП 30.13330.2012, СП 60.13330.2016, СП 31-106-2002, СП 73.13330.2016.
- Перед установкой коллектора трубопровод должен быть очищен от окалины и ржавчины.
- Системы отопления, теплоснабжения, внутреннего холодного и горячего водоснабжения, трубопроводы котельных по окончании их монтажа должны быть промыты водой до выхода ее без механических взвесей в соответствии со СНиП 03.05.01.
- Коллектор не должен испытывать нагрузок от трубопровода (изгиб, сжатие, растяжение, кручение, перекосы, вибрация, несоосность патрубков, неравномерность затяжки крепежа) /ГОСТ 12.2.063-81/.

5. Гидравлические испытания

После монтажа следует провести гидравлические испытания герметичности системы в соответствии с СП 73.13330.2016. Данное мероприятие позволяет обезопасить систему от протечек и ущерба, связанного с ними.

Гидравлические испытания проводятся статическим давлением в 1,5 раза превышающим расчётное рабочее давление в системе, но не менее 6 бар. Испытания проводятся в течение 15 минут без падения давления.

6. Указания по эксплуатации и техническому обслуживанию

При эксплуатации и техническом обслуживании необходимо придерживаться нескольких правил:

- Коллектор должен эксплуатироваться в соответствии с техническими параметрами, приведёнными в п.2 (Таблица 3) данного технического паспорта.
- Перед вводом системы в эксплуатацию рекомендуется промыть трубопровод для удаления посторонних примесей из системы.
- После запуска системы необходимо убедиться в отсутствии протечек.
- Не допускается замораживание рабочей среды внутри коллектора.
- Рабочая среда не должна способствовать образованию накипи и шлама на внутренних поверхностях изделия, а также вымыванию цинка из латуни.
- При осушении системы на зимний период, вентиль следует оставлять в полуоткрытом положении.