

КОЛЛЕКТОРНЫЙ БЛОК С РАСХОДОМЕРАМИ И АВТОМАТИЧЕСКИМИ ВОЗДУХООТВОДЧИКАМИ, ШАРОВЫМИ КРАНАМИ С ТЕРМОМЕТРАМИ ДЛЯ СИСТЕМ ВОДЯНОГО ОТОПЛЕНИЯ И ТЕПЛОГО ВОДЯНОГО ПОЛА

OKSELER

ТЕХНИЧЕСКИЙ ПАСПОРТ

000.683.000 ПС

1. Назначение, область применения и номенклатура

Коллекторный блок для систем водяного отопления и теплого водяного пола OKSELER предназначен для равномерного распределения теплоносителя и регулирования потоков в контурах теплого пола системы отопления.

Каждая труба системы водяного отопления или теплого водяного пола подключается к коллектору, что позволяет осуществлять регулировку и контроль потока теплоносителя индивидуально в каждом циркуляционном контуре.

Благодаря многофункциональности коллекторных блоков, в отапливаемых помещениях создаются не только комфортные условия для пребывания людей, но и значительно увеличиваются сроки службы оборудования и компонентов системы теплоснабжения. Использование коллекторов позволяет контролировать все параметры системы, обеспечивая идеальный баланс.

В качестве теплоносителя могут использоваться жидкости, неагрессивные к материалам изделия: вода, растворы на основе гликоля с максимально допустимой концентрацией 40%.

2. Основные функции

Коллекторные блоки для систем водяного отопления и теплого водяного пола OKSELER имеет следующие основные функции:

- Пропорциональное распределение потока транспортируемой среды по контурам теплого пола.
- Перекрытие потока теплоносителя через контуры теплого пола или с помощью отсечных сервисных клапанов.
- Регулирование потока теплоносителя (автоматическое регулирование при дополнении электроприводами).
- Измерение температуры теплоносителя.

3. Технические характеристики

Технические коллекторных блоков OKSELER приведены в таблице 1.

Характеристика	Единица измерения	значение	
Материал	-	Нержавеющая сталь AISI 304	
Максимальная рабочая температура теплоносителя	°C	90	
Рабочее давление	бар	10	
Допустимое содержание гликолей в рабочей среде	%	≤ 40%	
Диаметр коллектора	дюйм	G1''	
Количество выходов	ШТ	от 2 до 15	
Межосевое расстояние	ММ	50	
Диаметр выходных штуцеров	дюйм	3/4EK	
Резьба для присоединения сервопривода	ММ	M30x1,5	

4. Номенклатура и размеры

В таблице 2 представлены номенклатура, основные размеры и вес коллекторных блоков OKSELER

Таблица 2. Номенклатура, размеры, вес

	Артикул	Кол-во выходов	Длина L, мм	Масса, г
	Oks00683	2	180	1964
	Oks00684	3	230	2391
	Oks00685	4	280	2818
	Oks00686	5	330	3245
	Oks00687	6	380	3672
G3/4"EK	Oks00688	7	430	4099
50 510	Oks00689	8	480	4526
	Oks00690	9	530	4953
	Oks00691	10	580	5380
L	Oks00692	11	630	5807
	Oks00693	12	680	6234
	Oks00694	13	730	6661
	Oks00695	14	780	7088
	Oks00696	15	830	7515
Вес крана с термометром, г				487

5. Устройство коллекторного блока

На рисунке 1 и в таблице 3 показаны и описаны основные элементы

коллекторного блока



Рис.1 - Основные элементы коллекторного блока

Таблица 3. Основные элементы коллекторного блока

N₀	Наименование	Материал	Количество,	
поз.		, , , , , , , , , , , , , , , , , , ,	ШТ	
1	Подающий коллектор	Нержавеющая сталь AISI 304	1	
2	Обратный коллектор	Нержавеющая сталь AISI 304	1	
3	Расходомер	EMS-TR55	2-15*	
4	Термостатический клапан	CW617N, нейлон	2-15*	
5	Автоматический воздухоотводчик	CW617N, нейлон	2	
6	Дренажный клапан	CW617N, нейлон	2	
7	Ниппель переходной 1/2"х3/4" под	CW617N	2x(2-15*)	
	евроконус	CWOI/N	ZX(Z 13)	
8	Заглушка	CW617N	2	
9	Кронштейн	Сталь	2	
10	Кран подающей линии с термометром (красный)	Медный сплав	1	
11	Кран обратной линии с термометром (синий)	Медный сплав	1	

^{*} по числу входов/выходов коллектора

В состав коллектора распределительного для систем водяного отопления и теплого водяного пола OKSELER входят:

- подающий коллектор из нержавеющей стали AISI 304 с измерительными расходомерами и шайбами-ограничителями, с автоматическим воздухоотводчиком и дренажным клапаном.
- AISI 304 обратный коллектор нержавеющей ИЗ стали C термостатическими клапанами И возможностью установки электроприводов управления, С автоматическим системы воздухоотводчиком и дренажным клапаном.
- стальные кронштейны для крепления коллектора.
- отсечные ручные клапаны с термометрами.

6. Указания по монтажу и эксплуатации

Монтаж и запуск в эксплуатацию должен производиться только специализированной монтажной организацией.

Коллекторный блок OKSELER должен монтироваться при температуре в помещении выше 0°C.

Перед установкой коллекторного блока трубопровод должен быть очищен от ржавчины, грязи, окалины, песка и других посторонних частиц, влияющих на работоспособность изделия.

Коллекторный блок может быть смонтирован в любом монтажном положении, при этом воздухоотводчик должен располагаться строго вертикально в наивысшей точке системы.

Коллектор с расходомерами является подающим, с термостатическими запорными клапанами – обратным.

Коллекторный блок не должен испытывать нагрузок от трубопровода (изгиб, сжатие, растяжение, кручение, перекосы, вибрация, несоосность патрубков, неравномерность затяжки крепежа).

Для присоединения трубопроводов к коллекторным выводам следует использовать соответствующие типу и диаметру труб компрессионные фитинги типа «евроконус» ¾ дюйма.

Гидравлическая балансировка петель производится C помощью расходомерами, Прозрачный настроечных клапанов C колпачок расходомера дает возможность визуально наблюдать значение расхода теплоносителя через клапан. Для настройки нужно снять с расходомера фиксатор вверх), (потянув затем, вручную вращая маховик, установить требуемый расход, после чего вернуть фиксатор на место.

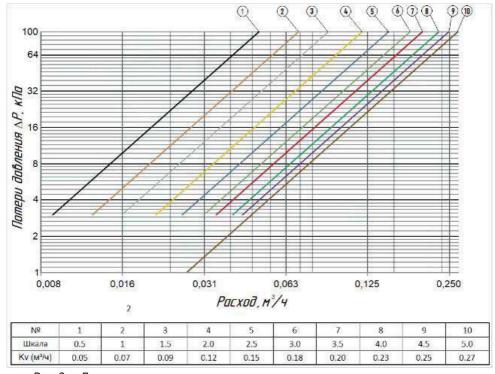


Рис.2 – Диаграмма потерь давления на клапане с расходомером

При монтаже необходимо исключить механические повреждения коллекторного блока и загрязнение его строительными смесями.

Коллекторный блок OKSELER должен эксплуатироваться в соответствии с техническими параметрами, приведёнными в таблице 1 данного технического паспорта. Не допускается замерзание теплоносителя внутри коллекторного блока.

Установка и демонтаж изделия, а также любые операции по ремонту должны производиться при отсутствии давления в системе. Перед техническим обслуживанием необходимо дать оборудованию остыть до температуры окружающего воздуха.

При заполнении системы, воздухоотводчики должны быть закрыты.

7. Гидравлические испытания

После монтажа следует провести гидравлические испытания герметичности системы в соответствии с СП 73.13330.2016. Данное мероприятие позволяет обезопасить систему от протечек и ущерба, связанного с ними.

Гидравлические испытания проводятся статическим давлением в 1,5 раза превышающим расчётное рабочее давление в системе, но не менее 6 бар. Испытания проводятся в течение 15 минут без падения давления.

Перед проведением испытания необходимо убедиться в том, что все накидные гайки плотно затянуты.

8. Условия хранения и транспортировки

Транспортировка и хранение изделия должны осуществляться в упаковке завода-изготовителя и соответствовать требованиям ГОСТ 15150-69.

транспортируют любым Коллекторные блоки видом транспорта соответствии с правилами перевозки грузов и техническими условиями погрузки и крепления грузов, действующими на данном виде транспорта. транспортировании следует оберегать При изделия ударов хранят нагрузок. Изделия механических условиях, исключающих вероятность их механических повреждений, в не отапливаемых или отапливаемых (не ближе одного метра от отопительных складских помещениях или под навесами.

9. Утилизация

Утилизация изделия производится в соответствии с установленным на (переплавка, предприятии порядком захоронение, перепродажа), составленным в соответствии с Законами РФ №96 Ф3 «Об охране №89 Ф3 «Об атмосферного воздуха», отходах производства потребления», №52 Ф3 «Об санитарно-эпидемиологическом благополучии населения», а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми во использование указанных законов. Содержание благородных металлов отсутствует.

10. Квалификации персонала, безопасность и охрана труда

Изделие, описанное в настоящем техническом паспорте, представляет собой технически сложное устройство, которое должно устанавливаться специалистом, имеющим соответствующую квалификацию и опыт работ с данным оборудованием.

Требования к квалификации персонала - в соответствии с перечнем профессиональных стандартов, состоящим в Реестре профстандартов Минтруда РФ с учетом последних изменений и дополнений.

Требования по технике безопасности и охране труда в соответствии с приказом Минтруда России от 29.10.2020 N 758н "Об утверждении Правил по охране труда в жилищно-коммунальном хозяйстве" (Зарегистрировано в Минюсте России 07.12.2020 N 61295). Раздел IX «Требования охраны труда при эксплуатации сетей водоснабжения и водоотведения»

