

КОЛЛЕКТОРНЫЙ БЛОК ЛАТУННЫЙ С РАСХОДОМЕРАМИ И АВТОМАТИЧЕСКИМИ ВОЗДУХООТВОДЧИКАМИ, ШАРОВЫМИ КРАНАМИ С ТЕРМОМЕТРАМИ ДЛЯ СИСТЕМ ВОДЯНОГО ОТОПЛЕНИЯ И ТЕПЛОГО ВОДЯНОГО ПОЛА

OKSELER

ТЕХНИЧЕСКИЙ ПАСПОРТ

000.697.000 ПС

1. Назначение, область применения и номенклатура

Коллекторный блок для систем водяного отопления и теплого водяного пола OKSELER предназначен для равномерного распределения теплоносителя и регулирования потоков в контурах теплого пола системы отопления.

Каждая труба системы водяного отопления или теплого водяного пола подключается к коллектору, что позволяет осуществлять регулировку и контроль потока теплоносителя индивидуально в каждом циркуляционном контуре.

Благодаря многофункциональности коллекторных блоков, в отапливаемых помещениях создаются не только комфортные условия для пребывания людей, но и значительно увеличиваются сроки службы оборудования и компонентов системы теплоснабжения. Использование коллекторов позволяет контролировать все параметры системы, обеспечивая идеальный баланс.

В качестве теплоносителя могут использоваться жидкости, неагрессивные к материалам изделия: вода, растворы на основе гликоля с максимально допустимой концентрацией 40%.

2. Основные функции

Коллекторные блоки для систем водяного отопления и теплого водяного пола OKSELER имеет следующие основные функции:

- Пропорциональное распределение потока транспортируемой среды по контурам теплого пола.
- Перекрытие потока теплоносителя через контуры теплого пола или с помощью отсечных сервисных клапанов.
- Регулирование потока теплоносителя (автоматическое регулирование при дополнении электроприводами).
- Измерение температуры теплоносителя.

3. Технические характеристики

Технические коллекторных блоков OKSELER приведены в таблице 1.

Таблица 1. Технические характеристики насосно-смесительного блока

Характеристика	Единица измерения	Значение
Материал	-	латунь CW617N
Максимальная рабочая температура теплоносителя	°C	90
Рабочее давление	бар	10
Допустимое содержание гликолей	%	≤ 40%
в рабочей среде		
Диаметр коллектора	дюйм	G1''
Количество выходов	ШТ	от 2 до 15
Межосевое расстояние	ММ	50
Диаметр выходных штуцеров	дюйм	3/4EK
Резьба для присоединения сервопривода	ММ	M30x1,5

4. Номенклатура и размеры

В таблице 2 представлены номенклатура, основные размеры и вес коллекторных блоков OKSELER

Таблица 2. Номенклатура, размеры

	Артикул	Кол-во выходов	Длина L, мм
	Oks00697	2	180
	Oks00698	3	230
	Oks00699	4	280
	Oks00700	5	330
	Oks00701	6	380
G3/4 EK 50	Oks00702	7	430
8	Oks00703	8	480
	Oks00704	9	530
	Oks00705	10	580
- 00	Oks00706	11	630
	Oks00707	12	680
	Oks00708	13	730
	Oks00709	14	780
	Oks00710	15	830
Вес крана с термометром, г			487

5. Устройство коллекторного блока

На рисунке 1 и в таблице 3 показаны и описаны основные элементы

Рис.1 – Основные элементы коллекторного блока

Таблица 3. Основные элементы коллекторного блока

N₀	Наименование	Материал	Количество, шт
поз.			
1	Подающий коллектор	CW617N	1
2	Обратный коллектор	CW617N	1
3	Расходомер	EMS-TR55	2-15*
4	Термостатический клапан	CW617N, нейлон	2-15*
5	Автоматический воздухоотводчик	CW617N, нейлон	2
6	Дренажный клапан	CW617N, нейлон	2
7	Ниппель переходной 1/2"x3/4" под евроконус	CW617N	2x(2-15*)
8	Заглушка	CW617N	2
9	Кронштейн	Сталь	2
10	Кран подающей линии с термометром (красный)	Медный сплав	1
11	Кран обратной линии с термометром (синий)	Медный сплав	1

^{*} по числу входов/выходов коллектора

В состав коллектора распределительного для систем водяного отопления и теплого водяного пола OKSELER входят:

- подающий коллектор из нержавеющей стали AISI 304 с измерительными расходомерами и шайбами-ограничителями, с автоматическим воздухоотводчиком и дренажным клапаном.
- AISI 304 нержавеющей обратный коллектор И3 стали термостатическими возможностью клапанами И установки управления, электроприводов системы C автоматическим воздухоотводчиком и дренажным клапаном.
- стальные кронштейны для крепления коллектора.
- отсечные ручные клапаны с термометрами.

6. Указания по монтажу и эксплуатации

Монтаж и запуск в эксплуатацию должен производиться только специализированной монтажной организацией.

Коллекторный блок OKSELER должен монтироваться при температуре в помещении выше 0°C.

Перед установкой коллекторного блока трубопровод должен быть очищен от ржавчины, грязи, окалины, песка и других посторонних частиц, влияющих на работоспособность изделия.

Коллекторный блок может быть смонтирован в любом монтажном положении, при этом воздухоотводчик должен располагаться строго вертикально в наивысшей точке системы.

Коллектор с расходомерами является подающим, с термостатическими запорными клапанами – обратным.

Коллекторный блок не должен испытывать нагрузок от трубопровода (изгиб, сжатие, растяжение, кручение, перекосы, вибрация, несоосность патрубков, неравномерность затяжки крепежа).

Для присоединения трубопроводов к коллекторным выводам следует использовать соответствующие типу и диаметру труб компрессионные фитинги типа «евроконус» ¾ дюйма.

Гидравлическая балансировка производится петель помощью настроечных клапанов C расходомерами, Прозрачный колпачок расходомера дает возможность визуально наблюдать значение расхода теплоносителя через клапан. Для настройки нужно снять с расходомера (потянув вверх), черный фиксатор затем, вручную вращая маховик, установить требуемый расход, после чего вернуть фиксатор на место.

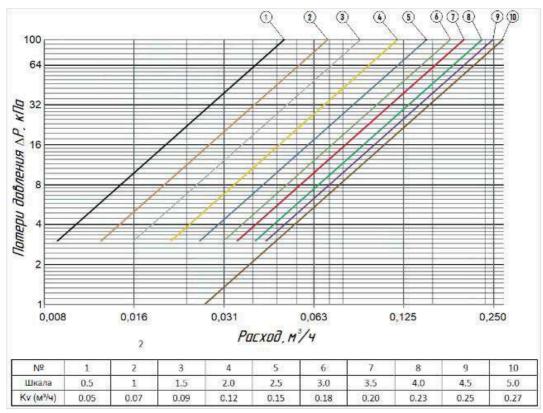


Рис. 2 – Диаграмма потерь давления на клапане с расходомером

При монтаже необходимо исключить механические повреждения коллекторного блока и загрязнение его строительными смесями.

Коллекторный блок OKSELER должен эксплуатироваться в соответствии с техническими параметрами, приведёнными в таблице 1 данного технического паспорта. Не допускается замерзание теплоносителя внутри коллекторного блока.

Установка и демонтаж изделия, а также любые операции по ремонту должны производиться при отсутствии давления в системе. Перед техническим обслуживанием необходимо дать оборудованию остыть до температуры окружающего воздуха.

При заполнении системы, воздухоотводчики должны быть закрыты.

10. Квалификации персонала, безопасность и охрана труда

Изделие, описанное в настоящем техническом паспорте, представляет собой технически сложное устройство, которое должно устанавливаться специалистом, имеющим соответствующую квалификацию и опыт работ с данным оборудованием.

Требования к квалификации персонала - в соответствии с перечнем профессиональных стандартов, состоящим в Реестре профстандартов Минтруда РФ с учетом последних изменений и дополнений.

Требования по технике безопасности и охране труда в соответствии с приказом Минтруда России от 29.10.2020 N 758н "Об утверждении Правил по охране труда в жилищно-коммунальном хозяйстве" (Зарегистрировано в Минюсте России 07.12.2020 N 61295). Раздел IX «Требования охраны труда при эксплуатации сетей водоснабжения и водоотведения»