

РЕГУЛЯТОР ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ «ПОСЛЕ СЕБЯ»

RDT-P-X1-X2-X3

Руководство по эксплуатации

НОМЕНКЛАТУРА

RDT-P-X1-X2-X3

где

RDT-Р - обозначение регулятора давления «После себя»;

Х1 - исполнение диапазона настройки регулятора;

X2 - значение условного диаметра;

ХЗ - значение условной пропускной способности.

ПРИМЕР ЗАКАЗА:

Регулятор давления «После себя» условным диаметром 32 мм, с пропускной способностью 10 м3/ч, максимальной температурой рабочей среды 150°C , с диапазоном настройки регулятора 0.7 - 3.5 бар. **RDT-P-2.1-32-10**

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметров, единицы измерения	Значения параметров										
Условный диаметр DN, мм	15	20	25	32	40	50	65	80	100	125	150
Условная пропускная способность Kvs, м ³ /ч	0,63 1,0 1,6 2,5 4,0	6,3	8,0	12,5 16	16 20 25	25 32	50	63 80	100 125	160 200	250 280
Коэффициент начала кавитации, Z	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3
Температура рабочей среды T, °C	+5 +150°C										
Условное давление PN, бар (МПа)	16 (1,6)										
Рабочая среда	Вода с температурой до 150°C, 30% водный раствор этиленгликоля										
Тип присоединения	фланцевый										
Исполнения диапазона настройки регулятора, бар (МПа): 1.1 1.2 1.3 2.1 2.2 2.3	0,2 - 1,6 (0,02 - 0,16) (оранжевая пружина) 0,6 - 3,0 (0,06 - 0,30) (серая пружина) 1,0 - 4,5 (0,10 - 0,45) (оранжевая пружина + серая пружина) 0,7 - 3,5 (0,07 - 0,35) (красная пружина) 2,0 - 6,5 (0,20 - 0,65) (желтая пружина) 3,0 - 9,0 (0,30 - 0,90) (красная пружина + желтая пружина)										
Зона пропорциональности, % от верхнего предела настройки, не более	6										
Динамический диапазон регулирования	1:50										
Относительная протечка, % от Kvs, не более	0,05%										
Окружающая среда	Воздух с температурой от +5°C до +50°C и влажностью 30- 80%										

Материалы:

-корпус

-крышка

-шток

-плунжер

-седло

-сменный блок уплотнения штока

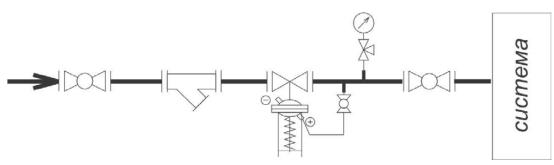
-уплотнение в затворе

-мембрана

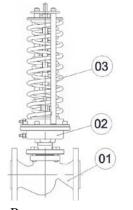
Чугун Сталь 20

Нержавеющая сталь 40Х13

Нержавеющая сталь 40Х13


Нержавеющая сталь 40Х13

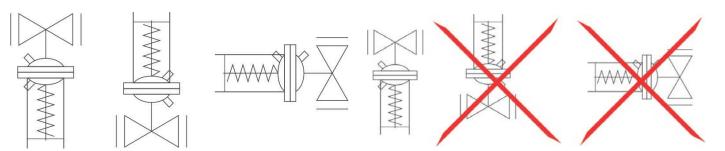
Направляющие-PTFE, прокладки-EPDM


"металл по металлу"

EPDM на тканевой основе

ПРИМЕНЕНИЕ

Установка регулятора давления «После себя»

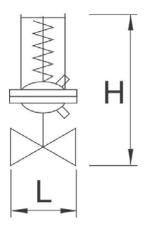


Конструкция

Общая конструкция регулятора давления «После себя» состоит из трех главных элементов: клапана 01, привода 02 и исполнительного механизма - устройства, задающего необходимое давление (далее-задатчик) 03. Тарелка клапана разгружена от гидростатических сил.

Регулятор давления "После себя" RDT-

МОНТАЖНЫЕ ПОЛОЖЕНИЯ



Монтажные положения регулятора на трубопроводе при температуре среды до 100°C требуются)

Монтажные положения регулятора на трубопроводе при температуре среды свыше 100°C (Прямолинейные участки до и после регулятора не (Прямолинейные участки до и после регулятора не требуются)

ГАБАРИТНЫЕ РАЗМЕРЫ

Наименование параметров, единицы измерения	Значения параметров										
Условный диаметр DN, мм	15	20	25	32	40	50	65	80	100	125	150
Длина L, мм	130	150	160	180	200	230	290	310	350	400	480
Высота Н, мм не более	525	530	535	550	565	581	583	611	672	695	735
Масса, кг не более	12	12,5	13,1	14,9	16,9	20	25	31	43,5	55	67

Монтажный комплект исполнительного механизма регулятора: для Ду 15-100:

- - медной импульсной трубкой Ду 6х1 мм длиной 1,0 м 1 шт;
- - латунной гайкой с внутренней резьбой М10х1 1 шт;
- - латунным штуцером с наружной трубной резьбой G1/2" (для подключения к шаровому крану) 1 шт;

для Ду 125-150:

- - медной импульсной трубкой Ду 10х1 мм длиной 1,0 м 1 шт;
- - латунной гайкой с внутренней резьбой М14х1,5 1 шт;
- - латунным штуцером с наружной трубной резьбой G1/2" (для подключения к шаровому крану) 1 шт;

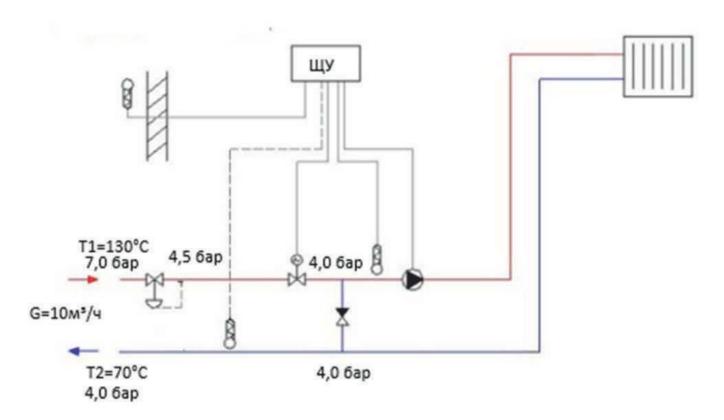
Импульсные трубки рекомендуется подключать через шаровый кран.

ПРИМЕР ПОДБОРА

Требуется подобрать регулятор давления «После себя».

Расход сетевого теплоносителя: 10 м³/ч.

Давление в подающем трубопроводе 7 бар.


Давление в обратном трубопроводе 4 бар.

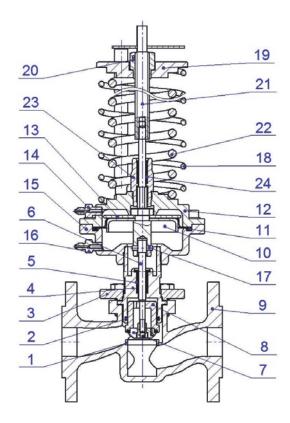
Перепад давлений на двухходовом регулирующем клапане 0,5 бар.

Требуемое давление за регулятором давления «После себя» 4,5 бар.

Регулятор давления «После себя» требуется установить на подающий трубопровод теплового пункта с температурой теплоносителя 130°C.

В соответствии с рекомендациями по подбору клапанов регуляторов прямого действия:

- 1. По формуле (1) определяем требуемую пропускную способность клапана:
 - (1) **Kv=G**/ $\sqrt{\Delta P}$ =10/ $\sqrt{0.5}$ =14,08 $M^3/4$.


Перепад давления на клапане ΔP выбираем из диапазона, указанного в рекомендациях по подбору регулирующих клапанов и регуляторов давления прямого действия ГК «Теплосила» в ИТП/ЦТП.

- 2. Выбираем диаметр клапана регулятора давления «После себя» с ближайшей большей условной пропускной способностью Kvs: Ду=32 мм, Kvs=16 м³/ч.
- 3. По формуле (2) определяем фактический перепад на полностью открытом клапане при максимальном расходе 10 м³/ч.
 - (2) $\Delta P \phi = (G/Kvs)^2 = (10/16)^2 = 0.39 \text{ fap.}$
- 4. Выбираем диапазон настройки регулятора давления «После себя»: Pтp=4,5 бар. Из таблицы подбора диапазона регулятора давлений «После себя», выбираем исполнение 2.2 (2,0-6,5 бар)
- 5. Определяем по формуле (5) и значению Рнас из таблицы 2 максимальный перепад давлений, который может на себе «погасить» регулятор при требуемой настройке давления после себя 4,5 бар и температуре теплоносителя 130°C:
 - (5) **ДРпред=Z(P1-Рнас)**=0,55(7-1,7)=2,92 бар.
- 6. Проверяем значение максимального перепада на схемном решении: 7-4.5=2.5 бар < 2.92 бар.
 - Регулятор подобран корректно: кавитация на клапане регулятора на заданные параметры отсутствует.
- 7. Номенклатура для заказа: **RDT-P-2.2-32-16**

УСТРОЙСТВО

Устройство регулятора давления «После себя» показано на рисунке ниже, перечень деталей в таблице

На рисунке	Наименование деталей	Наименование блока			
1 2	Седло Манжета (уплотнение разгрузочной камеры)				
3 4 5	Крышка клапана Стакан	Клапан 01			
6 7	Уплотнительный узел Шток Тарелка				
8 9	Плунжер Корпус клапана				
10 11 12 13 14 15	Поршень мембраны Мембрана Крышка (верхняя) Шайба Штуцер (+) Крышка (нижняя) Штуцер (-)	Привод 02			
17 18 19 20 21	Штифт Пружина задатчика (меньшего усилия) Шайба Гайка регулировочная Шток	Задатчик 03			

22	Пружина задатчика (большего усилия)	
23	Стакан	
24	Уплотнительный узел	

Клапан регулятора при отсутствии давления нормально открыт. Импульс высокого давления подается импульсной трубкой (подключённой в верхнюю камеру привода **02** со стороны задатчика **03** к штуцеру «+» поз.14) на мембрану поз.11. Импульс низкого давления (нижняя камера привода **02** со стороны клапана **01**, штуцер «-» поз. 16) под мембраной штуцер «-» не используется (остается открытым на атмосферу). Изменение регулируемой разницы давлений выше заданной величины, установленной при помощи пружины поз.18 (22) в задатчике **03**, приводит к сдвигу штока поз.21 и прикрытию или открытию тарелки поз.7 клапана **01** до момента, когда величина регулируемого давления достигнет величины, установленной на задатчике **03**.

ВНИМАНИЕ: ВО ИЗБЕЖАНИЕ ПОВРЕЖДЕНИЯ МЕМБРАНЫ НЕ ДОПУСКАЕТСЯ УСТАНАВЛИВАТЬ ЗАГЛУШКУ НА ШТУЦЕР «-».

МОНТАЖ РЕГУЛЯТОРА

Перед регулятором рекомендуется установить фильтр.

В месте забора импульса необходимо предусмотреть ручной запорный кран, позволяющий отключать давление от импульсной трубки. Во избежание загрязнения импульсной линии забор импульса желательно проводить сверху или сбоку трубопровода. Перед регулятором и после регулятора желательно предусмотреть ручные запорные краны, позволяющие проводить техническое обслуживание и ремонт регулятора без необходимости слива рабочей среды из всей системы.

Установить один штуцер из комплекта регулятора на трубопровод после регулятора согласно схеме подключения регулятора в месте, удобном для подсоединения импульсной трубки. Вблизи от места забора импульса (штуцера) установить манометр. Перед регулятором установить манометр. Соединить импульсной трубкой штуцер «+» регулятора со штуцером на трубопроводе. Штуцер «-» оставить открытым на атмосферу.