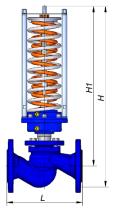
Регуляторы перепада давления «после себя» RDT- P.

Область применения и назначение

Регулятор давления «После себя» представляет собой нормально открытый регулирующий орган, принцип действия которого основан на уравновешивании силы упругой деформации пружины и силы, создаваемой разностью давлений рабочей среды в мембранных камерах привода.

Регуляторы давления «После себя» предназначены для автоматического поддержания заданного давления рабочей среды после регулятора (перед объектом) путем изменения расхода.

1. Устройство регулятора



2. Технические характеристики

НАИМЕНОВАНИЕ ПАРАМЕТРОВ, ЕДИНИЦЫ ИЗМЕРЕНИЯ	ЗНАЧЕНИЯ ПАРАМЕТРОВ										
Условный диаметр DN, мм	15	20	25	32	40	50	65	80	100	125	150
Условная пропускная способность Kvs, м³/ч	0,63 1,0 1,6 2,5 4,0	4,0 6,3	6,3 8,0	10 12,5 16	16 20 25	20 25 32	40 50	63 80	100 125	160 200	250 280
Коэффициент начала кавитации, Z	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3
Температура рабочей среды T, °C	+5 +150°C										
Условное давление PN, бар (МПа)	16 (1,6)										
Рабочая среда	Вода с температурой до 150°C, 30% водный раствор этиленгликоля										
Тип присоединения	фланцевый										
Исполнения диапазона настройки регулятора, бар (МПа):											
1.2 1.3	1 0,2 - 1,6 (0,02 - 0,16) (оранжевая пружина) 2 0,6 - 3,0 (0,06 - 0,30) (серая пружина) 3 1,0 - 4,5 (0,10 - 0,45) (оранжевая пружина + серая пружина) 1 0,7 - 3,5 (0,07 - 0,35) (красная пружина)										

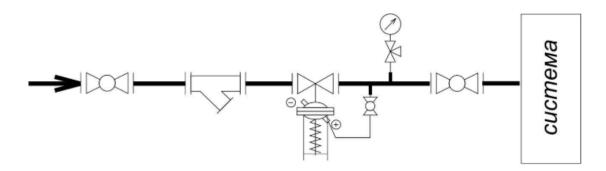
2.2 2.3	2,0 - 6,5 (0,20 - 0,65) (желтая пружина) 3,0 - 9,0 (0,30 - 0,90) (красная пружина + желтая пружина)
Зона пропорциональности, % от верхнего предела настройки, не более	6
Относительная протечка, % от Kvs, не более	0,05
Окружающая среда	Воздух с температурой от +5 °C до +50 °C и влажностью 30-80%
Материалы:	
-корпус	Чугун
-крышка	Сталь 20
-шток	Нержавеющая сталь 40Х13
-плунжер	Нержавеющая сталь 40Х13
-седло	Нержавеющая сталь 40Х13
-сменный блок уплотнения штока	Направляющие-РТFE, прокладки-ЕРDM
-уплотнение в затворе	"металл по металлу"
-мембрана	EPDM на тканевой основе

3. ГАБАРИТНЫЕ РАЗМЕРЫ

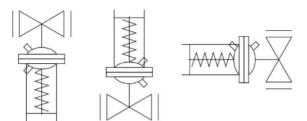
наименование параметров, единицы измерения	значения параметров										
Условный диаметр DN, мм	15	20	25	32	40	50	65	80	100	125	150
Длина L, мм	130	150	160	180	200	230	290	310	350	400	480
Высота Н1, мм	357,5	357,5	357,5	360	370	378,5	490,5	511	562	570	592,5
Высота Н, мм /не более	405	410	415	430	445	461	583	611	672	695	735
Масса, кг /не более	12	12,5	13,1	14,9	16,9	20	25	31	43,5	55	67

комплектуется:

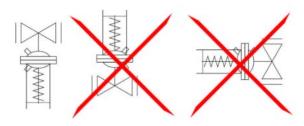
Монтажный комплект исполнительного механизма регулятора


для Ду 15-100:

- медной импульсной трубкой Ду 6х1 мм длиной 1,0 м 1 шт;
- латунной гайкой с внутренней резьбой M10x1 1 шт;
- латунным штуцером с наружной трубной резьбой G1/2" (для подключения к щаровому крану) 1 шт;


для Ду 125-150:

- медной импульсной трубкой Ду 10х1 мм длиной 1,0 м 1 шт;
- латунной гайкой с внутренней резьбой М14х1,5 1 шт;
- латунным штуцером с наружной трубной резьбой G1/2" (для подключения к шаровому крану) 1 шт.


4. Монтажные положения

Установка регулятора давления «После себя»

Монтажные положения регулятора на трубопроводе при температуре среды до 100°С (Прямолинейные участки до и после регулятора не требуются).

Монтажные положения регулятора на трубопроводе при температуре среды свыше 100°С (Прямолинейные участки до и после регулятора не требуются).

5. Пример подбора

гдеRDT-P-X1-X2-X3:

RDT-P - обозначение регулятора давления «После себя»;

- X1 исполнение диапазона настройки регулятора;
- **X2** значение условного диаметра;
- **Х3** значение условной пропускной способности.
 - 3. По формуле (3) определяем требуемую пропускную способность клапана:

 $\mathbf{K}\mathbf{v} = \mathbf{k}_{3a\Pi 1} \mathbf{G} / \sqrt{\Delta P} = 1,2 * 12 / \sqrt{3},5 = 7,7 \text{ m}^3/\text{u}.$

- 4. Из таблицы 3.4 выбираем регулятор давления «После себя» (Тип RDT-P) с ближайшим большим условным диаметром Dy и ближайшей большей условной пропускной способностью Kvs:
 - $Dy = 40 \text{ MM}, \text{ Kvs} = 16 \text{ M}^3/\text{ч}.$
 - 5. По формуле (7) определяем фактический перепад на полностью открытом клапане при максимальном расходе 12 м^3 /ч. $\Delta P \varphi = (G / \text{Kvs})^2 = (12 / 16)^2 = 0,56 \text{ бар}.$
 - 6. Из таблицы 3.4 для ΔP = 3,5 бар, выбираем исполнение диапазона настройки регулятора 2.2 (2,0-6,5 бар).
- 7. Определяем по формуле (9) и значению Рнас для температуры теплоносителя 110°C максимальный перепад давлений, который может на себе «погасить» регулятор:

 Δ Pпред = Z (Pвх – Pнас) = 0,55 (8,0 – 0,43) = 4,16 бар.

- 8. Так как расчетный перепад давления на регуляторе ΔP = 3,5 < ΔРпред = 4,16 бар, то регулятор подобран корректно: кавитация на клапане регулятора на заданные параметры отсутствует.
 - 9. Номенклатура для заказа: RDT-P-2.2-40-16

6. Преимущества:

- Широкий диапазон Kvs на каждый диаметр
- Адаптация к сложным условиям эксплуатации (используются ультрастойкие к абразивным веществам уплотнительные элементы)
- Комплектная поставка (с задатчиком и импульсными трубками)
- Ремонтопригодность (разборный мембранный блок)