МЕМБРАННЫЙ БАК РАСШИРИТЕЛЬНЫЙ для систем отопления

Инструкция по монтажу, эксплуатации и паспорт изделия

1. Назначение

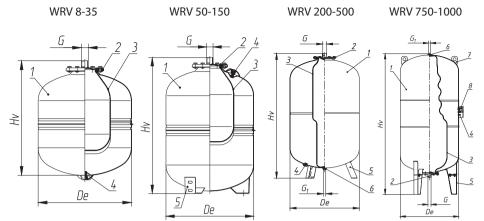
- 1.1 Мембранные баки Wester серии WRV предназначены для компенсации температурного расширения теплоносителя в замкнутых системах отопления.
- 1.2 В качестве теплоносителя допускается использование воды или водного раствора гликоля с концентрацией до 50%.

2. Технические характеристики

Диапазон рабочих температур теплоносителя: -10...+100 ℃.

Материал корпуса: Сталь углеродистая с эпоксиполиполиэфирным наружным покрытием красного цвета RAL 3020

Материал контрфланца: Сталь углеродистая с эпоксиполиэфирным покрытием красного цвета RAL 3020


Материал мембраны: EPDM (этилен-пропилендиен мономер)

Материал ниппеля: латунь Тип мембраны: заменяемая

2.1 Габаритные размеры

Модель	Объ- ём, л	Максималь- ное рабочее давление, бар	Предваритель- ное давление воздушной полости, атм	Диа- метр De, мм	Высо- та Нv, мм	Диаметр рабочего штуцера подклю- чения к системе, G	Диаметр держателя мембраны, G1
WRV 8	8	5	1.5	200	311	3/4" (HP)	
WRV 12	12	5	1.5	280	307	3/4" (HP)	
WRV 18	18	5	1.5	280	402	3/4" (HP)	
WRV 24	24	5	1.5	280	504	3/4" (HP)	
WRV 35	35	5	1.5	365	453	3/4" (HP)	
WRV 50	50	5	1.5	365	555	3/4" (HP)	
WRV 80	80	5	1.5	410	690	3/4" (HP)	
WRV 100	100	5	1.5	495	680	1" (HP)	
WRV 150	150	5	1.5	495	960	1" (HP)	
WRV 200 top	200	10	1.5	580	1120	1 1/4" (BP)	3/4"(HP) x 1/2"(BP)
WRV 300 top	300	10	1.5	660	1170	1 1/4" (BP)	3/4"(HP) x 1/2"(BP)
WRV 500 top	500	10	1.5	780	1390	1 1/4" (BP)	3/4"(HP) x 1/2"(BP)
WRV 750	750	10	4	780	1880	1 1/4" (BP)	3/4"(HP) x 1/2"(BP)
WRV 1000	1000	10	4	780	2280	1 1/4" (BP)	3/4"(HP) x 1/2"(BP)

Производитель оставляет за собой право вносить или модернизировать изделие, его технические характеристики и описание в соответствии с ТУ в любое время без предварительного уведомления.

- 1. Kopnyc
- 2. Контрфланец со штуцером подключения к системе
- 3. Мембрана
- 4. Ниппель

- 5. Опоры, стойки
- 6. Держатель мембраны
- 7. Проушины
- 8. Манометр
- 2.2 Все модели обладают следующими конструктивными особенностями:
- а) баки сделаны из прочной высококачественной стали по своей конструкции рассчитаны на многолетнюю эксплуатацию.
- б) баки снабжены штуцерами для подключения к системе отопления. Баки 200-1000 снабжены держателем мембраны к которому можно подключить манометр или необходимо заглушить.
- в) модели 50-150 выполнены на опорах, модели 200-1000 выполнены на стойках.
- 3. Расчёт объема расширительного бака.

$$V=(Ve+Vv) \times \frac{Pe+1}{Pe-Po, \pi}$$

Расчёт объёма расширения теплоносителя

Ve=Va x ∆e, л

Начальный объём теплоносителя в расширительном баке

$$V_V = \frac{Va \times 0.5}{100}$$
 ,но не менее 3л для баков более 15литров. Для баков менее 15литров -20% от размера бака

Va - полный объём теплоносителя в системе, л

Де – разница коэффициентов температурных расширений теплоносителя при максимальной рабочей температуре и температуре заполнения.

Конечное давление

Pe:
$$Pe=(Psv-Pda)+(\frac{Hsv}{10})$$

Hsv – разница между высотами установки предохранительного клапана и мембранного бака, м

Psv – давление срабатывание предохранительного клапана, бар

Pda - при Psv ≤ 5 бар=0.5; при Psv >5 бар=0.05Psv

Расчётное давление воздуха в мембранном баке перед установкой в систему

Po=(Hs/10)+0,2+Pp, но не менее 1 amm и не более конечного давления Pe.

Hs – статическая высота системы от точки установки мембранного бака, м

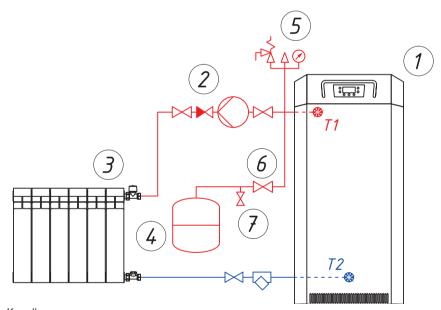
Рр-напор насоса, бар, учитывается если точка подключения мембранного бака находится после циркуляционного насоса.

Коэффициенты расширения теплоносителей относительно 0°С, %

Температура воды, °С	0°C	-20°C	-30℃	-65°C	-30°C
Содержание гликоля	0%	32,4% эти- лен-гликоля	44,4% эти- лен-гликоля	64,7% эти- лен-гликоля	44,6% пропи- лен-гликоля
Теплоноситель/ Конечная темпе- ратура, °C	Вода	DIXIS-20	DIXIS-30	DIXIS-65	DIXIS-TOP
0	0	0	0	0	0
10	0.0002	0,0037	0,0043	0,0057	0,0046
20	0.0016	0,0074	0,0085	0,0115	0,0093
30	0.0042	0,0125	0,0143	0,0178	0,0158
40	0.0077	0,0177	0,0201	0,0241	0,0223
50	0.0120	0,0229	0,0257	0,0305	0,0295
60	0.0170	0,0282	0,0314	0,0370	0,0369
70	0.0226	0,0335	0,0371	0,0435	0,0450
80	0.0289	0,0389	0,0429	0,0502	0,0532
90	0.0358	0,0449	0,0493	0,0569	0,0612
100	0.0433	0,0509	0,0557	0,0638	0,0693

4. Размещение и монтаж

- 4.1 Место установки бака необходимо выбрать так, чтобы предохранить его от ударов, производственной вибрации, воздействия атмосферных осадков. Любой удар или механическое воздействие могут привести к нарушению герметичности и как следствие выхода из строя расширительного бака.
- 4.2 При подключении мембранного бака к трубопроводу системы необходимо установить отключающий кран (п.6), и кран для опорожнения мембранного бака (п.7), как показано на схеме стр.5.
- 4.3 Максимальное рабочее давление бака должно быть больше, чем давление срабатывания предохранительного клапана. При этом необходимо учесть разницу в высоте расположения бака и предохранительного клапана.
- 4.4 Перед установкой бака необходимо настроить давление в воздушной полости мембранного бака, для чего подключить компрессор к ниппелю бака и накачать бак воздухом до расчетного давления (раздел 3).


4.5 При испытании системы отопления давлением, превышающим максимальное рабочее давление бака, необходимо отсоединить бак и заглушить подводящий трубопровод.

5. Техническое обслуживание

- 5.1 При эксплуатации мембранного необходимо не реже 1 раза в месяц проверять давление в воздушной полости.
- 5.2 Периодически, один раз в год, проводить профилактический осмотр.
- 5.3 Проверка давления в воздушной полости должна производится при остановленном котле, и отключенном от системы мембранном баке. Отключающий кран (п.6) должен быть закрыт, кран для слива теплоносителя из бака (п.7) открыт. После проверки и настройки давления в воздушной полости кран слива теплоносителя закрыть, а отключающий кран открыть.

Не разрешается эксплуатация системы при закрытом отключающем кране на мембранном баке.

6. Вариант установки расширительного бака

- 1. Котёл
- 2. Насос циркуляционный
- 3. Прибор отопительный
- 4. Бак мембранный расширительный Wester WRV
- 5. Клапан предохранительный
- 6. Отключающий кран
- 7. Дренажный кран

7. Возможные неисправности и способы их устранения

Возможная неисправность	Вероятная причина	Способ устранения	
	Отсутствует воздух в воз-	Подкачать необходимое	
	душной полости	давление воздуха насосом	
		Заменить ниппель и нака-	
Часто срабатывает предо-	Неисправен воздушный	чать давление воздуха в воз-	
хранительный клапан	ниппель	душной полости (обратиться	
		в сервисную службу)	
	Не настроено давление в	Подкачать или стравить дав-	
	воздушной полости	ление в воздушной полости	
При стравливании воздуха	Номенравиза момбраца	Заменить мембрану (обра-	
через ниппель выходит вода	Неисправная мембрана	титься в сервисную службу)	
При подкачке насосом дав-	 Мембрана прилипла к вну-	Переустановить мембрану	
ления в воздушной полости	тренней стенки бака	' ' ' '	
резко возрастает давление	Пренней стенки бака	(обратиться в сервисную)	

8.Условия транспортировки, хранения и эксплуатации

- 8.1 Условия транспортирования 5(ОЖ2) по ГОСТ15150. Разрешается транспортировать любым видом закрытого транспорта, в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- 8.2 Баки мембранные предназначены для эксплуатации в стационарном положении, в помещении. Поверхность бака необходимо предохранять от механических повреждений, абразивных и химических воздействий.
- 8.3 Климатическое исполнение баков мембранных и их функциональных составных частей соответствует условиям эксплуатации УХЛ, категории размещения 4 по ГОСТ 15150-69 и обеспечивает работоспособность в заданных условиях эксплуатации.
- 8.4 Температура помещения при эксплуатации мембранных баков, должна находиться в пределах +1 до +40 °C. Влажность воздуха не должна превышать 80% при +25 °C. Минимальная температура хранения минус 50 °C.